
Securing Debian Manual

Javier Fernández-Sanguino Peña <jfs@debian.org>

Securing Debian Manual
by Javier Fernández-Sanguino Peña

Abstract

This document describes security in the Debian project and in the Debian operating system. Starting with the process
of securing and hardening the default Debian GNU/Linux distribution installation, it also covers some of the common
tasks to set up a secure network environment using Debian GNU/Linux, gives additional information on the security
tools available and talks about how security is enforced in Debian by the security and audit team.

Copyright © 2012 The Debian Project

GNU General Public License Notice: This work is free documentation: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version.

This work is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.

http://www.gnu.org/licenses/

Table of Contents
1. Introduction .. 1

Authors ... 1
Where to get the manual (and available formats) .. 2
Organizational notes/feedback ... 2
Prior knowledge ... 2
Things that need to be written (FIXME/TODO) ... 3
Credits and thanks! ... 5

2. Before you begin .. 7
What do you want this system for? .. 7
Be aware of general security problems ... 7
How does Debian handle security? .. 9

3. Before and during the installation ... 10
Choose a BIOS password ... 10
Partitioning the system ... 10

Choose an intelligent partition scheme .. 10
Selecting the appropriate file systems ... 11

Do not plug to the Internet until ready .. 11
Set a root password ... 12
Run the minimum number of services required .. 12

Disabling daemon services .. 13
Disabling inetd or its services ... 14

Install the minimum amount of software required ... 14
Removing Perl .. 15

Read the Debian security mailing lists .. 17
4. After installation ... 18

Subscribe to the Debian Security Announce mailing list ... 18
Execute a security update ... 18

Security update of libraries ... 19
Security update of the kernel ... 20

Change the BIOS (again) ... 21
Set a LILO or GRUB password ... 21
Disable root prompt on the initramfs .. 22
Remove root prompt on the kernel ... 22
Restricting console login access ... 23
Restricting system reboots through the console ... 23
Restricting the use of the Magic SysRq key ... 24
Mounting partitions the right way .. 25

Setting /tmp noexec ... 26
Setting /usr read-only ... 26

Providing secure user access ... 26
User authentication: PAM ... 26
Password security in PAM .. 27
User access control in PAM .. 28
User limits in PAM ... 28
Control of su in PAM .. 29
Temporary directories in PAM .. 29
Configuration for undefined PAM applications ... 29
Limiting resource usage: the limits.conf file ... 30
User login actions: edit /etc/login.defs .. 31
User login actions: edit /etc/pam.d/login .. 32
Restricting ftp: editing /etc/ftpusers .. 33

iii

Securing Debian Manual

Using su .. 33
Using sudo ... 33
Disallow remote administrative access .. 33
Restricting users's access .. 34
User auditing .. 34
Reviewing user profiles .. 36
Setting users umasks .. 36
Limiting what users can see/access .. 37
Generating user passwords .. 38
Checking user passwords .. 38
Logging off idle users .. 39

Using tcpwrappers ... 39
The importance of logs and alerts .. 40

Using and customizing logcheck ... 41
Configuring where alerts are sent ... 41
Using a loghost ... 42
Log file permissions .. 42

Adding kernel patches .. 43
Protecting against buffer overflows .. 44

Kernel patch protection for buffer overflows .. 45
Testing programs for overflows ... 45

Secure file transfers ... 45
File system limits and control ... 46

Using quotas .. 46
The ext2 filesystem specific attributes (chattr/lsattr) .. 47
Checking file system integrity ... 48
Setting up setuid check .. 48

Securing network access ... 48
Configuring kernel network features ... 49
Configuring syncookies .. 49
Securing the network on boot-time ... 50
Configuring firewall features ... 53
Disabling weak-end hosts issues .. 53
Protecting against ARP attacks .. 54

Taking a snapshot of the system .. 55
Other recommendations .. 56

Do not use software depending on svgalib ... 56
5. Securing services running on your system .. 57

Securing ssh ... 57
Chrooting ssh ... 58
Ssh clients ... 59
Disallowing file transfers .. 59
Restricing access to file transfer only ... 59

Securing Squid ... 59
Securing FTP ... 61
Securing access to the X Window System ... 61

Check your display manager ... 62
Securing printing access (the lpd and lprng issue) ... 62
Securing the mail service ... 63

Configuring a Nullmailer .. 64
Providing secure access to mailboxes ... 65
Receiving mail securely ... 65

Securing BIND ... 66
Bind configuration to avoid misuse .. 66

iv

Securing Debian Manual

Changing BIND's user ... 68
Chrooting the name server .. 70

Securing Apache ... 71
Disabling users from publishing web contents .. 72
Logfiles permissions .. 72
Published web files ... 72

Securing finger ... 72
General chroot and suid paranoia ... 73

Making chrooted environments automatically ... 73
General cleartext password paranoia ... 74
Disabling NIS ... 74
Securing RPC services ... 74

Disabling RPC services completely .. 75
Limiting access to RPC services .. 75

Adding firewall capabilities .. 75
Firewalling the local system .. 75
Using a firewall to protect other systems ... 76
Setting up a firewall .. 76

6. Automatic hardening of Debian systems .. 83
Harden .. 83
Bastille Linux ... 84

7. Debian Security Infrastructure ... 85
The Debian Security Team ... 85
Debian Security Advisories ... 85

Vulnerability cross references .. 86
CVE compatibility ... 86

Security Tracker .. 87
Debian Security Build Infrastructure ... 87

Developer's guide to security updates ... 88
Package signing in Debian .. 88

The current scheme for package signature checks ... 88
Secure apt .. 89
Per distribution release check .. 90
Release check of non Debian sources .. 100
Alternative per-package signing scheme .. 101

8. Security tools in Debian .. 102
Remote vulnerability assessment tools ... 102
Network scanner tools .. 102
Internal audits ... 103
Auditing source code ... 103
Virtual Private Networks .. 103

Point to Point tunneling .. 104
Public Key Infrastructure (PKI) ... 105
SSL Infrastructure ... 105
Antivirus tools .. 105
GPG agent ... 107

9. Developer's Best Practices for OS Security ... 108
Best practices for security review and design ... 108
Creating users and groups for software daemons ... 109

10. Before the compromise ... 112
Keep your system secure .. 112

Tracking security vulnerabilities ... 112
Continuously update the system ... 113
Avoid using the unstable branch .. 115

v

Securing Debian Manual

Security support for the testing branch .. 115
Automatic updates in a Debian GNU/Linux system ... 116

Do periodic integrity checks .. 117
Set up Intrusion Detection ... 118

Network based intrusion detection .. 118
Host based intrusion detection ... 118

Avoiding root-kits ... 119
Loadable Kernel Modules (LKM) .. 119
Detecting root-kits ... 119

Genius/Paranoia Ideas - what you could do .. 120
Building a honeypot ... 121

11. After the compromise (incident response) ... 123
General behavior ... 123
Backing up the system ... 123
Contact your local CERT .. 124
Forensic analysis ... 124
Analysis of malware .. 125

12. Frequently asked Questions (FAQ) .. 126
Security in the Debian operating system .. 126

Is Debian more secure than X? .. 126
My system is vulnerable! (Are you sure?) .. 135

Specific software ... 138
proftpd is vulnerable to a Denial of Service attack. .. 138
After installing portsentry, there are a lot of ports open. ... 138

Questions regarding the Debian security team .. 138
A. Changelog/History ... 139
B. Appendix ... 151

The hardening process step by step .. 151
Configuration checklist ... 153
Setting up a stand-alone IDS ... 155
Setting up a bridge firewall ... 156

A bridge providing NAT and firewall capabilities ... 157
A bridge providing firewall capabilities ... 157
Basic IPtables rules .. 158

Sample script to change the default Bind installation. ... 159
Security update protected by a firewall .. 162
Chroot environment for SSH ... 164

Chrooting the ssh users .. 164
Chrooting the ssh server ... 167
Chroot environment for Apache ... 177
See also ... 181

vi

List of Examples
B.1. Basic Iptables rules ... 158

vii

Chapter 1. Introduction
One of the hardest things about writing security documents is that every case is unique. Two things you
have to pay attention to are the threat environment and the security needs of the individual site, host, or
network. For instance, the security needs of a home user are completely different from a network in a bank.
While the primary threat a home user needs to face is the script kiddie type of cracker, a bank network has
to worry about directed attacks. Additionally, the bank has to protect their customer's data with arithmetic
precision. In short, every user has to consider the trade-off between usability and security/paranoia.

Note that this manual only covers issues relating to software. The best software in the world can't protect
you if someone can physically access the machine. You can place it under your desk, or you can place it in
a hardened bunker with an army in front of it. Nevertheless the desktop computer can be much more secure
(from a software point of view) than a physically protected one if the desktop is configured properly and
the software on the protected machine is full of security holes. Obviously, you must consider both issues.

This document just gives an overview of what you can do to increase the security of your Debian GNU/
Linux system. If you have read other documents regarding Linux security, you will find that there are
common issues which might overlap with this document. However, this document does not try to be the
ultimate source of information you will be using, it only tries to adapt this same information so that it
is meaningful to a Debian GNU/Linux system. Different distributions do some things in different ways
(startup of daemons is one example); here, you will find material which is appropriate for Debian's pro-
cedures and tools.

Authors
The current maintainer of this document is Javier Fernández-Sanguino Peña. Please forward him any
comments, additions or suggestions, and they will be considered for inclusion in future releases of this
manual.

This manual was started as a HOWTO by Alexander Reelsen. After it was published on the Internet,
Javier Fernández-Sanguino Peña incorporated it into the Debian Documentation Project [http://www.de-
bian.org/doc]. A number of people have contributed to this manual (all contributions are listed in the
changelog) but the following deserve special mention since they have provided significant contributions
(full sections, chapters or appendices):

• Stefano Canepa

• Era Eriksson

• Carlo Perassi

• Alexandre Ratti

• Jaime Robles

• Yotam Rubin

• Frederic Schutz

• Pedro Zorzenon Neto

• Oohara Yuuma

1

http://www.debian.org/doc
http://www.debian.org/doc
http://www.debian.org/doc

Introduction

• Davor Ocelic

Where to get the manual (and available for-
mats)

You can download or view the latest version of the Securing Debian Manual from the Debian Documenta-
tion Project [https://www.debian.org/doc/user-manuals#securing]. If you are reading a copy from another
site, please check the primary copy in case it provides new information. If you are reading a translation,
please review the version the translation refers to to the latest version available. If you find that the version
is behind please consider using the original copy or review the to see what has changed.

If you want a full copy of the manual you can either download the text version [https://www.de-
bian.org/doc/manuals/securing-debian-manual/securing-debian-manual.en.txt] or the PDF version
[https://www.debian.org/doc/manuals/securing-debian-manual/securing-debian-manual.en.pdf] from the
Debian Documentation Project's site. These versions might be more useful if you intend to copy the doc-
ument over to a portable device for offline reading or you want to print it out. Be forewarned, the manual
is over two hundred pages long and some of the code fragments, due to the formatting tools used, are not
wrapped in the PDF version and might be printed incomplete.

The document is also provided in text, html and PDF formats in the harden-doc [http://packages.de-
bian.org/harden-doc] package. Notice, however, that the package maybe not be completely up to date with
the document provided on the Debian site (but you can always use the source package to build an updated
version yourself).

This document is part of the documents distributed by the Debian Documentation Project [https://www.de-
bian.org/doc/ddp]. You can review the changes introduced in the document using a web browser and ob-
taining information from the version control logs online [https://salsa.debian.org/ddp-team/securing-de-
bian-manual]. You can also checkout the code using Git with the following call in the command line:

$ git clone https://salsa.debian.org/ddp-team/securing-debian-manual.git

Organizational notes/feedback
Now to the official part. At the moment I (Alexander Reelsen) wrote most paragraphs of this manual,
but in my opinion this should not stay the case. I grew up and live with free software, it is part of my
everyday use and I guess yours, too. I encourage everybody to send me feedback, hints, additions or any
other suggestions you might have.

If you think, you can maintain a certain section or paragraph better, then write to the document maintainer
and you are welcome to do it. Especially if you find a section marked as FIXME, that means the authors
did not have the time yet or the needed knowledge about the topic. Drop them a mail immediately.

The topic of this manual makes it quite clear that it is important to keep it up to date, and you can do your
part. Please contribute.

Prior knowledge
The installation of Debian GNU/Linux is not very difficult and you should have been able to install it.
If you already have some knowledge about Linux or other Unices and you are a bit familiar with basic
security, it will be easier to understand this manual, as this document cannot explain every little detail of a
feature (otherwise this would have been a book instead of a manual). If you are not that familiar, however,
you might want to take a look at for where to find more in-depth information.

2

https://www.debian.org/doc/user-manuals#securing
https://www.debian.org/doc/user-manuals#securing
https://www.debian.org/doc/user-manuals#securing
https://www.debian.org/doc/manuals/securing-debian-manual/securing-debian-manual.en.txt
https://www.debian.org/doc/manuals/securing-debian-manual/securing-debian-manual.en.txt
https://www.debian.org/doc/manuals/securing-debian-manual/securing-debian-manual.en.txt
https://www.debian.org/doc/manuals/securing-debian-manual/securing-debian-manual.en.pdf
https://www.debian.org/doc/manuals/securing-debian-manual/securing-debian-manual.en.pdf
http://packages.debian.org/harden-doc
http://packages.debian.org/harden-doc
http://packages.debian.org/harden-doc
https://www.debian.org/doc/ddp
https://www.debian.org/doc/ddp
https://www.debian.org/doc/ddp
https://salsa.debian.org/ddp-team/securing-debian-manual
https://salsa.debian.org/ddp-team/securing-debian-manual
https://salsa.debian.org/ddp-team/securing-debian-manual

Introduction

Things that need to be written (FIXME/TODO)
This section describes all the things that need to be fixed in this manual. Some paragraphs include FIXME
or TODO tags describing what content is missing (or what kind of work needs to be done). The purpose of
this section is to describe all the things that could be included in the future in the manual, or enhancements
that need to be done (or would be interesting to add).

If you feel you can provide help in contributing content fixing any element of this list (or the inline anno-
tations), contact the main author (the section called “Authors”).

• This document has yet to be updated based on the latest Debian releases. The default configuration of
some packages need to be adapted as they have been modified since this document was written.

• Expand the incident response information, maybe add some ideas derived from Red Hat's Security
Guide's chapter on incident response [https://web.archive.org/web/20100412191348/http://www.red-
hat.com/docs/manuals/linux/RHL-9-Manual/security-guide/ch-response.html].

• Write about remote monitoring tools (to check for system availability) such as monit, daemon-
tools and mon. See Sysamin Guide [https://web.archive.org/web/20100110040204/http://linuxdevcen-
ter.com/pub/a/linux/2002/05/09/sysadminguide.html].

• Consider writing a section on how to build Debian-based network appliances (with information such
as the base system, equivs and FAI).

• Check if this site [https://web.archive.org/web/20040731082209/http://www.giac.org/practical/gsec/
Chris_Koutras_GSEC.pdf] has relevant info not yet covered here.

• Add information on how to set up a laptop with De-
bian, look here [https://web.archive.org/web/20040725013857/http://www.giac.org/practical/gcux/
Stephanie_Thomas_GCUX.pdf].

• Add information on how to set up a firewall using Debian GNU/Linux. The section regarding firewalling
is oriented currently towards a single system (not protecting others...) also talk on how to test the setup.

• Add information on setting up a proxy firewall with Debian GNU/Linux stating specifically which
packages provide proxy services (like xfwp, ftp-proxy, redir, smtpd, dnrd, jftpgw, oops, pdnsd, perdi-
tion, transproxy, tsocks). Should point to the manual for any other info. Note that zorp is now available
as a Debian package and is a proxy firewall (they also provide Debian packages upstream).

• Information on service configuration with file-rc.

• Check all the reference URLs and remove/fix those no longer available.

• Add information on available replacements (in Debian) for common servers which are useful for limited
functionality. Examples:

• local lpr with cups (package)?

• remote lrp with lpr

• bind with dnrd/maradns

• apache with dhttpd/thttpd/wn (tux?)

• exim/sendmail with ssmtpd/smtpd/postfix

3

https://web.archive.org/web/20100412191348/http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/security-guide/ch-response.html
https://web.archive.org/web/20100412191348/http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/security-guide/ch-response.html
https://web.archive.org/web/20100412191348/http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/security-guide/ch-response.html
https://web.archive.org/web/20100110040204/http://linuxdevcenter.com/pub/a/linux/2002/05/09/sysadminguide.html
https://web.archive.org/web/20100110040204/http://linuxdevcenter.com/pub/a/linux/2002/05/09/sysadminguide.html
https://web.archive.org/web/20100110040204/http://linuxdevcenter.com/pub/a/linux/2002/05/09/sysadminguide.html
https://web.archive.org/web/20040731082209/http://www.giac.org/practical/gsec/Chris_Koutras_GSEC.pdf
https://web.archive.org/web/20040731082209/http://www.giac.org/practical/gsec/Chris_Koutras_GSEC.pdf
https://web.archive.org/web/20040731082209/http://www.giac.org/practical/gsec/Chris_Koutras_GSEC.pdf
https://web.archive.org/web/20040725013857/http://www.giac.org/practical/gcux/Stephanie_Thomas_GCUX.pdf
https://web.archive.org/web/20040725013857/http://www.giac.org/practical/gcux/Stephanie_Thomas_GCUX.pdf
https://web.archive.org/web/20040725013857/http://www.giac.org/practical/gcux/Stephanie_Thomas_GCUX.pdf

Introduction

• squid with tinyproxy

• ftpd with oftpd/vsftp

• ...

• More information regarding security-related kernel patches in Debian, including the ones shown above
and specific information on how to enable these patches in a Debian system.

• Linux Intrusion Detection (kernel-patch-2.4-lids)

• Linux Trustees (in package trustees)

• NSA Enhanced Linux [http://wiki.debian.org/SELinux]

• linux-patch-openswan

• ...

• Details of turning off unnecessary network services (besides inetd), it is partly in the hardening proce-
dure but could be broadened a bit.

• Information regarding password rotation which is closely related to policy.

• Policy, and educating users about policy.

• More about tcpwrappers, and wrappers in general?

• hosts.equiv and other major security holes.

• Issues with file sharing servers such as Samba and NFS?

• suidmanager/dpkg-statoverrides.

• lpr and lprng.

• Switching off the GNOME IP things.

• Talk about pam_chroot (see http://lists.debian.org/debian-security/2002/05/msg00011.html)
and its usefulness to limit users. Introduce information related to https://we-
b.archive.org/web/20031204060940/http://www.securityfocus.com/infocus/1575. pdmenu, for exam-
ple is available in Debian (whereas flash is not).

• Talk about chrooting services, some more info on this Linux Focus article [http://www.linuxfo-
cus.org/English/January2002/article225.shtml].

• Talk about programs to make chroot jails. compartment and chrootuid are waiting in incoming. Some
others (makejail, jailer) could also be introduced.

• More information regarding log analysis software (i.e. logcheck and logcolorise).

• 'advanced' routing (traffic policing is security related).

• limiting ssh access to running certain commands.

• using dpkg-statoverride.

• secure ways to share a CD burner among users.

4

http://wiki.debian.org/SELinux
http://wiki.debian.org/SELinux
http://lists.debian.org/debian-security/2002/05/msg00011.html
https://web.archive.org/web/20031204060940/http://www.securityfocus.com/infocus/1575
https://web.archive.org/web/20031204060940/http://www.securityfocus.com/infocus/1575
http://www.linuxfocus.org/English/January2002/article225.shtml
http://www.linuxfocus.org/English/January2002/article225.shtml
http://www.linuxfocus.org/English/January2002/article225.shtml

Introduction

• secure ways of providing networked sound in addition to network display capabilities (so that X clients'
sounds are played on the X server's sound hardware).

• securing web browsers.

• setting up ftp over ssh.

• using crypto loopback file systems.

• encrypting the entire file system.

• steganographic tools.

• setting up a PKA for an organization.

• using LDAP to manage users. There is a HOWTO of ldap+kerberos for Debian at http://www.bay-
our.com written by Turbo Fredrikson.

• How to remove information of reduced utility in production systems such as /usr/share/doc, /
usr/share/man (yes, security by obscurity).

• More information on lcap based on the packages README file (well, not there yet, see http://bugs.de-
bian.org/cgi-bin/bugreport.cgi?bug=169465) and from the article from LWN: http://lwn.net/1999/1202/
kernel.php3.

• Add Colin's article on how to setup a chroot environment for a full sid system (https://we-
b.archive.org/web/20030204012846/https://people.debian.org/~walters/chroot.html).

• Add information on running multiple snort sensors in a given system (check bug reports sent to snort).

• Add information on setting up a honeypot (honeyd).

• Describe situation wrt to FreeSwan (orphaned) and OpenSwan. VPN section needs to be rewritten.

• Add a specific section about databases, current installation defaults and how to secure access.

• Add a section about the usefulness of virtual servers (Xen et al).

• Explain how to use some integrity checkers (AIDE, integrit or samhain). The basics are simple and
could even explain some configuration improvements.

Credits and thanks!
• Alexander Reelsen wrote the original document.

• added more info to the original doc.

• Robert van der Meulen provided the quota paragraphs and many good ideas.

• Ethan Benson corrected the PAM paragraph and had some good ideas.

• Dariusz Puchalak contributed some information to several chapters.

• Gaby Schilders contributed a nice Genius/Paranoia idea.

• Era Eriksson smoothed out the language in a lot of places and contributed the checklist appendix.

• Philipe Gaspar wrote the LKM information.

5

http://www.bayour.com
http://www.bayour.com
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=169465
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=169465
http://lwn.net/1999/1202/kernel.php3
http://lwn.net/1999/1202/kernel.php3
https://web.archive.org/web/20030204012846/https://people.debian.org/~walters/chroot.html
https://web.archive.org/web/20030204012846/https://people.debian.org/~walters/chroot.html

Introduction

• Yotam Rubin contributed fixes for many typos as well as information regarding bind versions and MD5
passwords.

• Francois Bayart provided the appendix describing how to set up a bridge firewall.

• Joey Hess wrote the section describing how Secure Apt works on the Debian Wiki [http://wiki.de-
bian.org/SecureApt].

• Martin F. Krafft wrote some information on his blog regarding fingerprint verification which was also
reused for the Secure Apt section.

• Francesco Poli did an extensive review of the manual and provided quite a lot of bug reports and typo
fixes which improved and helped update the document.

• All the people who made suggestions for improvements that (eventually) were included here (see the
section called “Where to get the manual (and available formats)”).

• (Alexander) All the folks who encouraged me to write this HOWTO (which was later turned into a
manual).

• The whole Debian project.

6

http://wiki.debian.org/SecureApt
http://wiki.debian.org/SecureApt
http://wiki.debian.org/SecureApt

Chapter 2. Before you begin
What do you want this system for?

Securing Debian is not very different from securing any other system; in order to do it properly, you must
first decide what you intend to do with it. After this, you will have to consider that the following tasks
need to be taken care of if you want a really secure system.

You will find that this manual is written from the bottom up, that is, you will read some information on
tasks to do before, during and after you install your Debian system. The tasks can also be thought of as:

• Decide which services you need and limit your system to those. This includes deactivating/uninstalling
unneeded services, and adding firewall-like filters, or tcpwrappers.

• Limit users and permissions in your system.

• Harden offered services so that, in the event of a service compromise, the impact to your system is
minimized.

• Use appropriate tools to guarantee that unauthorized use is detected so that you can take appropriate
measures.

Be aware of general security problems
The following manual does not (usually) go into the details on why some issues are considered security
risks. However, you might want to have a better background regarding general UNIX and (specific) Linux
security. Take some time to read over security related documents in order to make informed decisions
when you are encountered with different choices. Debian GNU/Linux is based on the Linux kernel, so
much of the information regarding Linux, as well as from other distributions and general UNIX security
also apply to it (even if the tools used, or the programs available, differ).

Some useful documents include:

• The http://www.tldp.org/HOWTO/Security-HOWTO/ is one of the best references regarding general
Linux security.

• The http://www.tldp.org/HOWTO/Security-Quickstart-HOWTO/ is also a very good starting point for
novice users (both to Linux and security).

• The http://seifried.org/lasg/ is a complete guide that touches all the issues related to security in Linux,
from kernel security to VPNs. Note that it has not been updated since 2001, but some information is
still relevant. 1

• Kurt Seifried's http://seifried.org/security/os/linux/20020324-securing-linux-step-by-step.html.

• In http://www.tldp.org/links/p_books.html#securing_linux you can find a similar document to this man-
ual but related to Red Hat, some of the issues are not distribution-specific and also apply to Debian.

• Another Red Hat related document is https://web.archive.org/web/20050520170309/https://ltp.source-
forge.net/docs/RHEL-EAL3-Configuration-Guide.pdf.

1 At a given time it was superseded by the "Linux Security Knowledge Base". This documentation is also provided in Debian through the lskb
package. Now it's back as the Lasg again.

7

http://www.tldp.org/HOWTO/Security-HOWTO/
http://www.tldp.org/HOWTO/Security-Quickstart-HOWTO/
http://seifried.org/lasg/
http://seifried.org/security/os/linux/20020324-securing-linux-step-by-step.html
http://www.tldp.org/links/p_books.html#securing_linux
https://web.archive.org/web/20050520170309/https://ltp.sourceforge.net/docs/RHEL-EAL3-Configuration-Guide.pdf
https://web.archive.org/web/20050520170309/https://ltp.sourceforge.net/docs/RHEL-EAL3-Configuration-Guide.pdf

Before you begin

• IntersectAlliance has published some documents that can be used as reference cards on
how to harden Linux servers (and their services), the documents are available at https://we-
b.archive.org/web/20030210231943/http://www.intersectalliance.com/projects/index.html.

• For network administrators, a good reference for building a secure network
is the https://web.archive.org/web/20030418093551/http://www.linuxsecurity.com/docs/LDP/Secur-
ing-Domain-HOWTO/.

• If you want to evaluate the programs you are going to use (or want to build up some new ones) you should
read the http://www.tldp.org/HOWTO/Secure-Programs-HOWTO/ (master copy is available at http://
www.dwheeler.com/secure-programs/, it includes slides and talks from the author, David Wheeler)

• If you are considering installing firewall capabilities, you should read the http://www.tldp.org/HOW-
TO/Firewall-HOWTO.html and the http://www.tldp.org/HOWTO/IPCHAINS-HOWTO.html (for ker-
nels previous to 2.4).

• Finally, a good card to keep handy is the https://web.archive.org/web/20030308013020/http://www.lin-
uxsecurity.com/docs/QuickRefCard.pdf.

In any case, there is more information regarding the services explained here (NFS, NIS, SMB...) in many
of the HOWTOs of the http://www.tldp.org/. Some of these documents speak on the security side of a
given service, so be sure to take a look there too.

The HOWTO documents from the Linux Documentation Project are available in Debian GNU/Linux
through the installation of the doc-linux-text (text version) or doc-linux-html (HTML version). After in-
stallation these documents will be available at the /usr/share/doc/HOWTO/en-txt and /usr/
share/doc/HOWTO/en-html directories, respectively.

Other recommended Linux books:

• Maximum Linux Security : A Hacker's Guide to Protecting Your Linux Server and Network. Anony-
mous. Paperback - 829 pages. Sams Publishing. ISBN: 0672313413. July 1999.

• Linux Security By John S. Flowers. New Riders; ISBN: 0735700354. March 1999.

• https://web.archive.org/web/20030202131658/https://www.linux.org/books/ISBN_0072127732.html
By Brian Hatch. McGraw-Hill Higher Education. ISBN 0072127732. April, 2001

Other books (which might be related to general issues regarding UNIX and security and not Linux specific):

• https://web.archive.org/web/20030206231652/http://www.oreilly.com/catalog/puis/ Garfinkel, Simp-
son, and Spafford, Gene; O'Reilly Associates; ISBN 0-56592-148-8; 1004pp; 1996.

• Firewalls and Internet Security Cheswick, William R. and Bellovin, Steven M.; Addison-Wesley; 1994;
ISBN 0-201-63357-4; 320pp.

Some useful web sites to keep up to date regarding security:

• http://csrc.nist.gov/.

• https://cve.mitre.org/data/refs/refmap/source-BUGTRAQ.html CVE Reference Map for Source BUG-
TRAQ

• http://www.linuxsecurity.com/. General information regarding Linux security (tools, news...). Most use-
ful is the https://linuxsecurity.com/howtos page.

8

https://web.archive.org/web/20030210231943/http://www.intersectalliance.com/projects/index.html
https://web.archive.org/web/20030210231943/http://www.intersectalliance.com/projects/index.html
https://web.archive.org/web/20030418093551/http://www.linuxsecurity.com/docs/LDP/Securing-Domain-HOWTO/
https://web.archive.org/web/20030418093551/http://www.linuxsecurity.com/docs/LDP/Securing-Domain-HOWTO/
http://www.tldp.org/HOWTO/Secure-Programs-HOWTO/
http://www.dwheeler.com/secure-programs/
http://www.dwheeler.com/secure-programs/
http://www.tldp.org/HOWTO/Firewall-HOWTO.html
http://www.tldp.org/HOWTO/Firewall-HOWTO.html
http://www.tldp.org/HOWTO/IPCHAINS-HOWTO.html
https://web.archive.org/web/20030308013020/http://www.linuxsecurity.com/docs/QuickRefCard.pdf
https://web.archive.org/web/20030308013020/http://www.linuxsecurity.com/docs/QuickRefCard.pdf
http://www.tldp.org/
https://web.archive.org/web/20030202131658/https://www.linux.org/books/ISBN_0072127732.html
https://web.archive.org/web/20030206231652/http://www.oreilly.com/catalog/puis/
http://csrc.nist.gov/
https://cve.mitre.org/data/refs/refmap/source-BUGTRAQ.html
http://www.linuxsecurity.com/
https://linuxsecurity.com/howtos

Before you begin

How does Debian handle security?
Just so you have a general overview of security in Debian GNU/Linux you should take note of the different
issues that Debian tackles in order to provide an overall secure system:

• Debian problems are always handled openly, even security related. Security issues are discussed openly
on the debian-security mailing list. Debian Security Advisories (DSAs) are sent to public mailing lists
(both internal and external) and are published on the public server. As the http://www.debian.org/so-
cial_contract states: We will not hide problems. We will keep our entire bug report database open for
public view at all times. Reports that people file online will promptly become visible to others.

• Debian follows security issues closely. The security team checks many security related sources, the
most important being http://www.securityfocus.com/cgi-bin/vulns.pl, on the lookout for packages with
security issues that might be included in Debian.

• Security updates are the first priority. When a security problem arises in a Debian package, the secu-
rity update is prepared as fast as possible and distributed for our stable, testing and unstable releases,
including all architectures.

• Information regarding security is centralized in a single point, http://security.debian.org/.

• Debian is always trying to improve the overall security of the distribution by starting new projects, such
as automatic package signature verification mechanisms.

• Debian provides a number of useful security related tools for system administration and monitoring.
Developers try to tightly integrate these tools with the distribution in order to make them a better suite to
enforce local security policies. Tools include: integrity checkers, auditing tools, hardening tools, firewall
tools, intrusion detection tools, etc.

• Package maintainers are aware of security issues. This leads to many "secure by default" service in-
stallations which could impose certain restrictions on their normal use. Debian does, however, try to
balance security and ease of administration - the programs are not de-activated when you install them
(as it is the case with say, the BSD family of operating systems). In any case, prominent security issues
(such as setuid programs) are part of the http://www.debian.org/doc/debian-policy/.

By publishing security information specific to Debian and complementing other information-security doc-
uments related to Debian (see the section called “Prior knowledge”), this document aims to produce better
system installations security-wise.

9

http://www.debian.org/social_contract
http://www.debian.org/social_contract
http://www.securityfocus.com/cgi-bin/vulns.pl
http://security.debian.org/
http://www.debian.org/doc/debian-policy/

Chapter 3. Before and during the
installation

Choose a BIOS password
Before you install any operating system on your computer, set up a BIOS password. After installation
(once you have enabled bootup from the hard disk) you should go back to the BIOS and change the boot
sequence to disable booting from floppy, CD-ROM and other devices that shouldn't boot. Otherwise a
cracker only needs physical access and a boot disk to access your entire system.

Disabling booting unless a password is supplied is even better. This can be very effective if you run a
server, because it is not rebooted very often. The downside to this tactic is that rebooting requires human
intervention which can cause problems if the machine is not easily accessible.

Note: many BIOSes have well known default master passwords, and applications also exist to retrieve the
passwords from the BIOS. Corollary: don't depend on this measure to secure console access to system.

Partitioning the system

Choose an intelligent partition scheme
An intelligent partition scheme depends on how the machine is used. A good rule of thumb is to be fairly
liberal with your partitions and to pay attention to the following factors:

• Any directory tree which a user has write permissions to, such as e.g. /home, /tmp and /var/tmp/,
should be on a separate partition. This reduces the risk of a user DoS by filling up your "/" mount
point and rendering the system unusable (Note: this is not strictly true, since there is always some space
reserved for root which a normal user cannot fill), and it also prevents hardlink attacks. 1

• Any partition which can fluctuate, e.g. /var (especially /var/log) should also be on a separate
partition. On a Debian system, you should create /var a little bit bigger than on other systems, because
downloaded packages (the apt cache) are stored in /var/cache/apt/archives.

• Any partition where you want to install non-distribution software should be on a separate partition.
According to the File Hierarchy Standard, this is /opt or /usr/local. If these are separate partitions,
they will not be erased if you (have to) reinstall Debian itself.

• From a security point of view, it makes sense to try to move static data to its own partition, and then
mount that partition read-only. Better yet, put the data on read-only media. See below for more details.

In the case of a mail server it is important to have a separate partition for the mail spool. Remote users
(either knowingly or unknowingly) can fill the mail spool (/var/mail and/or /var/spool/mail).
If the spool is on a separate partition, this situation will not render the system unusable. Otherwise (if the
spool directory is on the same partition as /var) the system might have important problems: log entries

1 A very good example of this kind of attacks using /tmp is detailed in http://www.hackinglinuxexposed.com/articles/20031111.html and http://
www.hackinglinuxexposed.com/articles/20031214.html (notice that the incident is Debian-related). It is basicly an attack in which a local user
stashes away a vulnerable setuid application by making a hard link to it, effectively avoiding any updates (or removal) of the binary itself made
by the system administrator. Dpkg was recently fixed to prevent this (see http://bugs.debian.org/225692) but other setuid binaries (not controlled
by the package manager) are at risk if partitions are not setup correctly.

10

http://www.hackinglinuxexposed.com/articles/20031111.html
http://www.hackinglinuxexposed.com/articles/20031214.html
http://www.hackinglinuxexposed.com/articles/20031214.html
http://bugs.debian.org/225692

Before and during the installation

will not be created, packages cannot be installed, and some programs might even have problems starting
up (if they use /var/run).

Also, for partitions in which you cannot be sure of the needed space, installing Logical Volume Manager
(lvm-common and the needed binaries for your kernel, this might be either lvm10, lvm6, or lvm5). Using
lvm, you can create volume groups that expand multiple physical volumes.

Selecting the appropriate file systems
During the system partitioning you also have to decide which file system you want to use. The default
file system2 selected in the Debian installation for Linux partitions is ext3, a journaling file system. It is
recommended that you always use a journaling file system, such as ext3, reiserfs, jfs or xfs, to
minimize the problems derived from a system crash in the following cases:

• for laptops in all the file systems installed. That way if you run out of battery unexpectedly or the system
freezes due to a hardware issue (such as X configuration which is somewhat common) you will be less
likely to lose data during a hardware reboot.

• for production systems which store large amounts of data (like mail servers, ftp servers, network file
systems...) it is recommended on these partitions. That way, in the event of a system crash, the server
will take less time to recover and check the file systems, and data loss will be less likely.

Leaving aside the performance issues regarding journalling file systems (since this can sometimes turn into
a religious war), it is usually better to use the ext3 file system. The reason for this is that it is backwards
compatible with ext2, so if there are any issues with the journalling you can disable it and still have a
working file system. Also, if you need to recover the system with a bootdisk (or CD-ROM) you do not
need a custom kernel. If the kernel is 2.4 or 2.6 ext3 support is already available, if it is a 2.2 kernel
you will be able to boot the file system even if you lose journalling capabilities. If you are using other
journalling file systems you will find that you might not be able to recover unless you have a 2.4 or 2.6
kernel with the needed modules built-in. If you are stuck with a 2.2 kernel on the rescue disk, it might be
even more difficult to have it access reiserfs or xfs.

In any case, data integrity might be better under ext3 since it does file-data journalling while others do
only meta-data journalling, see http://lwn.net/2001/0802/a/ext3-modes.php3.

Notice, however, that there are some partitions that might not benefit from using a journaling filesystem.
For example, if you are using a separate partition for /tmp/ you might be better off using a standard
ext2 filesystem as it will be cleaned up when the system boots.

Do not plug to the Internet until ready
The system should not be immediately connected to the Internet during installation. This could sound
stupid but network installation is a common method. Since the system will install and activate services
immediately, if the system is connected to the Internet and the services are not properly configured you
are opening it to attack.

Also note that some services might have security vulnerabilities not fixed in the packages you are using
for installation. This is usually true if you are installing from old media (like CD-ROMs). In this case, the
system could even be compromised before you finish installation!

Since Debian installation and upgrades can be done over the Internet you might think it is a good idea to use
this feature on installation. If the system is going to be directly connected to the Internet (and not protected
by a firewall or NAT), it is best to install without connection to the Internet, using a local packages mirror

2 Since Debian GNU/Linux 4.0, codename etch

11

http://lwn.net/2001/0802/a/ext3-modes.php3

Before and during the installation

for both the Debian package sources and the security updates. You can set up package mirrors by using
another system connected to the Internet with Debian-specific tools (if it's a Debian system) like apt-move
or apt-proxy, or other common mirroring tools, to provide the archive to the installed system. If you cannot
do this, you can set up firewall rules to limit access to the system while doing the update (see the section
called “Security update protected by a firewall”).

Set a root password
Setting a good root password is the most basic requirement for having a secure system. See passwd(1) for
some hints on how to create good passwords. You can also use an automatic password generation program
to do this for you (see the section called “Generating user passwords”).

Plenty of information on choosing good passwords can be found on the Internet; two that provide a decent
summary and rationale are Eric Wolfram's http://wolfram.org/writing/howto/password.html and Walter
Belgers' https://web.archive.org/web/20030218000949/http://www.belgers.com/write/pwseceng.txt

Run the minimum number of services required
Services are programs such as ftp servers and web servers. Since they have to be listening for incoming
connections that request the service, external computers can connect to yours. Services are sometimes
vulnerable (i.e. can be compromised under a given attack) and hence present a security risk.

You should not install services which are not needed on your machine. Every installed service might
introduce new, perhaps not obvious (or known), security holes on your computer.

As you may already know, when you install a given service the default behavior is to activate it. In a default
Debian installation, with no services installed, the number of running services is quite low and the number
of network-oriented services is even lower. In a default Debian 3.1 standard installation you will end up
with OpenSSH, Exim (depending on how you configured it) and the RPC portmapper available as network
services3. If you did not go through a standard installation but selected an expert installation you can end
up with no active network services. The RPC portmapper is installed by default because it is needed for
many services, for example NFS, to run on a given system. However, it can be easily removed, see the
section called “Securing RPC services” for more information on how to secure or disable RPC services.

When you install a new network-related service (daemon) in your Debian GNU/Linux system it can be
enabled in two ways: through the inetd superdaemon (i.e. a line will be added to /etc/inetd.conf)
or through a standalone program that binds itself to your network interfaces. Standalone programs are
controlled through the /etc/init.d files, which are called at boot time through the SysV mechanism
(or an alternative one) by using symlinks in /etc/rc?.d/* (for more information on how this is done
read /usr/share/doc/sysvinit/README.runlevels.gz).

If you want to keep some services but use them rarely, use the update-* commands, e.g. update-inetd and
update-rc.d to remove them from the startup process. For more information on how to disable network
services read the section called “Disabling daemon services”. If you want to change the default behaviour
of starting up services on installation of their associated packages4 use policy-rc.d, please read /usr/
share/doc/sysv-rc/README.policy-rc.d.gz for more information.

invoke-rc.d support is mandatory in Debian, which means that for Debian 4.0 etch and later releases you
can write a policy-rc.d file that forbids starting new daemons before you configure them. Although no
such scripts are packaged yet, they are quite simple to write. See policyrcd-script-zg2.

3 The footprint in Debian 3.0 and earlier releases wasn't as tight, since some inetd services were enabled by default. Also standard installations of
Debian 2.2 installed the NFS server as well as the telnet server.
4 This is desirable if you are setting up a development chroot, for example.

12

http://wolfram.org/writing/howto/password.html
https://web.archive.org/web/20030218000949/http://www.belgers.com/write/pwseceng.txt

Before and during the installation

Disabling daemon services
Disabling a daemon service is quite simple. You either remove the package providing the program for that
service or you remove or rename the startup links under /etc/rc${runlevel}.d/. If you rename
them make sure they do not begin with 'S' so that they don't get started by /etc/init.d/rc. Do not remove all
the available links or the package management system will regenerate them on package upgrades, make
sure you leave at least one link (typically a 'K', i.e. kill, link). For more information read http://www.de-
bian.org/doc/manuals/reference/ch-system.en.html#s-custombootscripts section of the Debian Reference
(Chapter 2 - Debian fundamentals).

You can remove these links manually or using update-rc.d (see update-rc.d(8)). For example, you
can disable a service from executing in the multi-user runlevels by doing:

 # update-rc.d name stop XX 2 3 4 5 .

Where XX is a number that determines when the stop action for that service will be executed. Please
note that, if you are not using file-rc, update-rc.d -f service remove will not work properly,
since all links are removed, upon re-installation or upgrade of the package these links will be re-generat-
ed (probably not what you wanted). If you think this is not intuitive you are probably right (see http://
bugs.debian.org/67095). From the manpage:

 If any files /etc/rcrunlevel.d/[SK]??name already exist then
 update-rc.d does nothing. This is so that the system administrator
 can rearrange the links, provided that they leave at least one
 link remaining, without having their configuration overwritten.

If you are using file-rc all the information regarding services bootup is handled by a common configuration
file and is maintained even if packages are removed from the system.

You can use the TUI (Text User Interface) provided by sysv-rc-conf to do all these changes easily (sysv-
rc-conf works both for file-rc and normal System V runlevels). You will also find similar GUIs for desktop
systems. You can also use the command line interface of sysv-rc-conf:

 # sysv-rc-conf foobar off

The advantage of using this utility is that the rc.d links are returned to the status they had before the 'off'
call if you re-enable the service with:

 # sysv-rc-conf foobar on

Other (less recommended) methods of disabling services are:

• Removing the /etc/init.d/service_name script and removing the startup links using:

 # update-rc.d name remove

• Move the script file (/etc/init.d/service_name) to another name (for example /etc/
init.d/OFF.service_name). This will leave dangling symlinks under /etc/rc${runlev-
el}.d/ and will generate error messages when booting up the system.

• Remove the execute permission from the /etc/init.d/service_name file. That will also gen-
erate error messages when booting.

13

http://www.debian.org/doc/manuals/reference/ch-system.en.html#s-custombootscripts
http://www.debian.org/doc/manuals/reference/ch-system.en.html#s-custombootscripts
http://bugs.debian.org/67095
http://bugs.debian.org/67095

Before and during the installation

• Edit the /etc/init.d/service_name script to have it stop immediately once it is executed (by
adding an exit 0 line at the beginning or commenting out the start-stop-daemon part in it). If you
do this, you will not be able to use the script to startup the service manually later on.

Nevertheless, the files under /etc/init.d are configuration files and should not get overwritten due
to package upgrades if you have made local changes to them.

Unlike other (UNIX) operating systems, services in Debian cannot be disabled by modifying files in /
etc/default/service_name.

FIXME: Add more information on handling daemons using file-rc.

Disabling inetd or its services
You should check if you really need the inetd daemon nowadays. Inetd was always a way to compensate
for kernel deficiencies, but those have been taken care of in modern Linux kernels. Denial of Service
possibilities exist against inetd (which can increase the machine's load tremendously), and many people
always preferred using stand-alone daemons instead of calling services via inetd. If you still want to run
some kind of inetd service, then at least switch to a more configurable Inet daemon like xinetd, rlinetd
or openbsd-inetd.

You should stop all unneeded Inetd services on your system, like echo, chargen, discard, daytime, time,
talk, ntalk and r-services (rsh, rlogin and rcp) which are considered HIGHLY insecure (use ssh instead).

You can disable services by editing /etc/inetd.conf directly, but Debian provides a better alterna-
tive: update-inetd (which comments the services in a way that it can easily be turned on again). You
could remove the telnet daemon by executing this commands to change the config file and to restart the
daemon (in this case the telnet service is disabled):

 /usr/sbin/update-inetd --disable telnet

If you do want services listening, but do not want to have them listen on all IP addresses of your host, you
might want to use an undocumented feature on inetd (replace service name with service@ip syntax) or
use an alternative inetd daemon like xinetd.

Install the minimum amount of software re-
quired

Debian comes with a lot of software, for example the Debian 3.0 woody release includes 6 or 7 (depending
on architecture) CD-ROMs of software and thousands of packages, and the Debian 3.1 sarge release ships
with around 13 CD-ROMs of software. With so much software, and even if the base system installation is
quite reduced 5 you might get carried away and install more than is really needed for your system.

Since you already know what the system is for (don't you?) you should only install software that is really
needed for it to work. Any unnecessary tool that is installed might be used by a user that wants to compro-

5 For example, in Debian woody it is around 400-500 Mbs, try this:

 $ size=0
 $ for i in `grep -A 1 -B 1 "^Section: base" /var/lib/dpkg/available |
 grep -A 2 "^Priority: required" |grep "^Installed-Size" |cut -d : -f 2
 `; do size=$(($size+$i)); done
 $ echo $size
 47762

14

Before and during the installation

mise the system or by an external intruder that has gotten shell access (or remote code execution through
an exploitable service).

The presence, for example, of development utilities (a C compiler) or interpreted languages (such as perl
- but see below -, python, tcl...) may help an attacker compromise the system even further:

• allowing him to do privilege escalation. It's easier, for example, to run local exploits in the system if
there is a debugger and compiler ready to compile and test them!

• providing tools that could help the attacker to use the compromised system as a base of attack against
other systems. 6

Of course, an intruder with local shell access can download his own set of tools and execute them, and
even the shell itself can be used to make complex programs. Removing unnecessary software will not help
prevent the problem but will make it slightly more difficult for an attacker to proceed (and some might
give up in this situation looking for easier targets). So, if you leave tools in a production system that could
be used to remotely attack systems (see the section called “Remote vulnerability assessment tools”) you
can expect an intruder to use them too if available.

Please notice that a default installation of Debian sarge (i.e. an installation where no individual packages
are selected) will install a number of development packages that are not usually needed. This is because
some development packages are of Standard priority. If you are not going to do any development you can
safely remove the following packages from your system, which will also help free up some space:

Package Size
------------------------+--------
gdb 2,766,822
gcc-3.3 1,570,284
dpkg-dev 166,800
libc6-dev 2,531,564
cpp-3.3 1,391,346
manpages-dev 1,081,408
flex 257,678
g++ 1,384 (Note: virtual package)
linux-kernel-headers 1,377,022
bin86 82,090
cpp 29,446
gcc 4,896 (Note: virtual package)
g++-3.3 1,778,880
bison 702,830
make 366,138
libstdc++5-3.3-dev 774,982

This is something that is fixed in releases post-sarge, see http://bugs.debian.org/cgi-bin/bugreport.c-
gi?bug=301273 and http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=301138. Due to a bug in the instal-
lation system this did not happen when installing with the installation system of the Debian 3.0 woody
release.

Removing Perl
You must take into account that removing perl might not be too easy (as a matter of fact it can be quite
difficult) in a Debian system since it is used by many system utilities. Also, the perl-base is Priority:

6 Many intrusions are made just to get access to resources to do illegitimate activity (denial of service attacks, spam, rogue ftp servers, dns pollution...)
rather than to obtain confidential data from the compromised system.

15

http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=301273
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=301273
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=301138

Before and during the installation

required (that about says it all). It's still doable, but you will not be able to run any perl application in the
system; you will also have to fool the package management system to think that the perl-base is installed
even if it's not. 7

Which utilities use perl? You can see for yourself:

 $ for i in /bin/* /sbin/* /usr/bin/* /usr/sbin/*; do [-f $i] && {
 type=`file $i | grep -il perl`; [-n "$type"] && echo $i; }; done

These include the following utilities in packages with priority required or important:

• /usr/bin/chkdupexe of package util-linux.

• /usr/bin/replay of package bsdutils.

• /usr/sbin/cleanup-info of package dpkg.

• /usr/sbin/dpkg-divert of package dpkg.

• /usr/sbin/dpkg-statoverride of package dpkg.

• /usr/sbin/install-info of package dpkg.

• /usr/sbin/update-alternatives of package dpkg.

• /usr/sbin/update-rc.d of package sysvinit.

• /usr/bin/grog of package groff-base.

• /usr/sbin/adduser of package adduser.

• /usr/sbin/debconf-show of package debconf.

• /usr/sbin/deluser of package adduser.

• /usr/sbin/dpkg-preconfigure of package debconf.

• /usr/sbin/dpkg-reconfigure of package debconf.

• /usr/sbin/exigrep of package exim.

• /usr/sbin/eximconfig of package exim.

• /usr/sbin/eximstats of package exim.

• /usr/sbin/exim-upgrade-to-r3 of package exim.

• /usr/sbin/exiqsumm of package exim.

• /usr/sbin/keytab-lilo of package lilo.

• /usr/sbin/liloconfig of package lilo.

• /usr/sbin/lilo_find_mbr of package lilo.

• /usr/sbin/syslogd-listfiles of package sysklogd.

7 You can make (on another system) a dummy package with equivs.

16

Before and during the installation

• /usr/sbin/syslog-facility of package sysklogd.

• /usr/sbin/update-inetd of package netbase.

So, without Perl and, unless you remake these utilities in shell script, you will probably not be able to
manage any packages (so you will not be able to upgrade the system, which is not a Good Thing).

If you are determined to remove Perl from the Debian base system, and you have spare time, submit bug
reports to the previous packages including (as a patch) replacements for the utilities above written in shell
script.

If you wish to check out which Debian packages depend on Perl you can use

$ grep-available -s Package,Priority -F Depends perl

or

$ apt-cache rdepends perl

Read the Debian security mailing lists
It is never wrong to take a look at either the debian-security-announce mailing list, where advisories and
fixes to released packages are announced by the Debian security team, or at mailto:debian-security@list-
s.debian.org, where you can participate in discussions about things related to Debian security.

In order to receive important security update alerts, send an email to mailto:debian-security-announce-re-
quest@lists.debian.org with the word "subscribe" in the subject line. You can also subscribe to this mod-
erated email list via the web page at http://www.debian.org/MailingLists/subscribe.

This mailing list has very low volume, and by subscribing to it you will be immediately alerted of security
updates for the Debian distribution. This allows you to quickly download new packages with security bug
fixes, which is very important in maintaining a secure system (see the section called “Execute a security
update” for details on how to do this).

17

mailto:debian-security@lists.debian.org
mailto:debian-security@lists.debian.org
mailto:debian-security-announce-request@lists.debian.org
mailto:debian-security-announce-request@lists.debian.org
http://www.debian.org/MailingLists/subscribe

Chapter 4. After installation
Once the system is installed you can still do more to secure the system; some of the steps described in
this chapter can be taken. Of course this really depends on your setup but for physical access prevention
you should read the section called “Change the BIOS (again)”,the section called “Set a LILO or GRUB
password”, the section called “Remove root prompt on the kernel”, the section called “Restricting console
login access ”, and the section called “Restricting system reboots through the console”.

Before connecting to any network, especially if it's a public one you should, at the very least, execute a
security update (see the section called “Execute a security update”). Optionally, you could take a snapshot
of your system (see the section called “Taking a snapshot of the system”).

Subscribe to the Debian Security Announce
mailing list

In order to receive information on available security updates you should subscribe yourself to the de-
bian-security-announce mailing list in order to receive the Debian Security Advisories (DSAs). See the
section called “The Debian Security Team” for more information on how the Debian security team works.
For information on how to subscribe to the Debian mailing lists read http://lists.debian.org.

DSAs are signed with the Debian Security Team's signature which can be retrieved from http://securi-
ty.debian.org.

You should consider, also, subscribing to the http://lists.debian.org/debian-security for general discussion
on security issues in the Debian operating system. You will be able to contact other fellow system admin-
istrators in the list as well as Debian developers and upstream developers of security tools who can answer
your questions and offer advice.

FIXME: Add the key here too?

Execute a security update
As soon as new security bugs are detected in packages, Debian maintainers and upstream authors gener-
ally patch them within days or even hours. After the bug is fixed, a new package is provided on http://
security.debian.org.

If you are installing a Debian release you must take into account that since the release was made there
might have been security updates after it has been determined that a given package is vulnerable. Also,
there might have been minor releases (there have been four for the Debian 3.0 sarge release) which include
these package updates.

During installation security updates are configured for your system and pending updates downloaded and
applied, unless you specifically opt out of this or the system was not connected to the Internet. The updates
are applied even before the first boot, so the new system starts its life as up to date as possible.

To manually update the system, put the following line in your sources.list and you will get security
updates automatically, whenever you update your system. Replace [CODENAME] with the release code-
name, e.g. squeeze.

18

http://lists.debian.org
http://security.debian.org
http://security.debian.org
http://lists.debian.org/debian-security
http://security.debian.org
http://security.debian.org

After installation

 deb http://security.debian.org/ [CODENAME]/updates main contrib non-free

Note: If you are using the testing branch use the security testing mirror sources as described in the section
called “Security support for the testing branch”.

Once you've done this you can use multiple tools to upgrade your system. If you are running a desktop
system you will have1 an application called update-notifier that will make it easy to check if new updates
are available, by selecting it you can make a system upgrade from the desktop (using update-manager).
For more information see the section called “Checking for updates at the Desktop”. In desktop environ-
ments you can also use synaptic (GNOME), kpackage or adept (KDE) for more advanced interfaces. If
you are running a text-only terminal you can use aptitude, apt or dselect (deprecated) to upgrade:

• If you want to use aptitude's text interface you just have to press u (update) followed by g (to upgrade).
Or just do the following from the command line (as root):

aptitude update
aptitude upgrade

• If you want to use apt do just like with aptitude but substitute the aptitude lines above with apt-get.

• If you want to use dselect then first [U]pdate, then [I]nstall and finally, [C]onfigure the installed/up-
graded packages.

If you like, you can add the deb-src lines to /etc/apt/sources.list as well. See apt(8) for further
details.

Security update of libraries

Once you have executed a security update you might need to restart some of the system services. If you
do not do this, some services might still be vulnerable after a security upgrade. The reason for this is that
daemons that are running before an upgrade might still be using the old libraries before the upgrade 2.

From Debian Jessie and up, you can install the needrestart package, which will run automatically after
each APT upgrade and prompt you to restart services that are affected by the just-installed updates. In
earlier releases, you can run the checkrestart program (available in the debian-goodies package) manually
after your APT upgrade.

Some packages (like libc6) will do this check in the postinst phase for a limited set of services specially
since an upgrade of essential libraries might break some applications (until restarted)3.

Bringing the system to run level 1 (single user) and then back to run level 3 (multi user) should take care
of the restart of most (if not all) system services. But this is not an option if you are executing the security
upgrade from a remote connection (like ssh) since it will be severed.

Excercise caution when dealing with security upgrades if you are doing them over a remote connection
like ssh. A suggested procedure for a security upgrade that involves a service restart is to restart the SSH
daemon and then, immediately, attempt a new ssh connection without breaking the previous one. If the
connection fails, revert the upgrade and investigate the issue.

1 In Etch and later releases
2 Even though the libraries have been removed from the filesystem the inodes will not be cleared up until no program has an open file descriptor
pointing to them.
3 This happened, for example, in the upgrade from libc6 2.2.x to 2.3.x due to NSS authentication issues, see http://lists.debian.org/de-
bian-glibc/2003/03/msg00276.html.

19

http://lists.debian.org/debian-glibc/2003/03/msg00276.html
http://lists.debian.org/debian-glibc/2003/03/msg00276.html

After installation

Security update of the kernel
First, make sure your kernel is being managed through the packaging system. If you have installed using the
installation system from Debian 3.0 or previous releases, your kernel is not integrated into the packaging
system and might be out of date. You can easily confirm this by running:

$ dpkg -S `readlink -f /vmlinuz`
linux-image-2.6.18-4-686: /boot/vmlinuz-2.6.18-4-686

If your kernel is not being managed you will see a message saying that the package manager did not find
the file associated to any package instead of the message above, which says that the file associated to
the current running kernel is being provided by the linux-image-2.6.18-4-686. So first, you will need to
manually install a kernel image package. The exact kernel image you need to install depends on your
architecture and your prefered kernel version. Once this is done, you will be able to manage the security
updates of the kernel just like those of any other package. In any case, notice that the kernel updates will
only be done for kernel updates of the same kernel version you are using, that is, apt will not automatically
upgrade your kernel from the 2.4 release to the 2.6 release (or from the 2.4.26 release to the 2.4.27 release4).

The installation system of recent Debian releases will handle the selected kernel as part of the package
system. You can review which kernels you have installed by running:

$ COLUMNS=150 dpkg -l 'linux-image*' | awk '$1 ~ /ii/ { print $0 }'

To see if your kernel needs to be updated run:

$ kernfile=`readlink -f /vmlinuz`
$ kernel=`dpkg -S $kernfile | awk -F : '{print $1}'`
$ apt-cache policy $kernel
linux-image-2.6.18-4-686:
 Installed: 2.6.18.dfsg.1-12
 Candidate: 2.6.18.dfsg.1-12
 Version table:
 *** 2.6.18.dfsg.1-12 0
 100 /var/lib/dpkg/status

If you are doing a security update which includes the kernel image you need to reboot the system in order
for the security update to be useful. Otherwise, you will still be running the old (and vulnerable) kernel
image.

If you need to do a system reboot (because of a kernel upgrade) you should make sure that the kernel will
boot up correctly and network connectivity will be restored, specially if the security upgrade is done over
a remote connection like ssh. For the former you can configure your boot loader to reboot to the original
kernel in the event of a failure (for more detailed information read Remotely rebooting Debian GNU/
Linux machines [http://www.debian-administration.org/?article=70]). For the latter you have to introduce
a network connectivity test script that will check if the kernel has started up the network subsystem properly
and reboot the system if it did not5. This should prevent nasty surprises like updating the kernel and then

4 Unless you have installed a kernel metapackage like linux-image-2.6-686 which will always pull in the latest kernel minor revision for a kernel
release and a given architecture.
5 A sample script called testnet [http://www.debian-administration.org/articles/70/testnet] is available in the Remotely rebooting Debian GNU/
Linux machines [http://www.debian-administration.org/?article=70] article. A more elaborate network connectivity testing script is available in this
Testing network connectivity article. [http://www.debian-administration.org/?article=128]

20

http://www.debian-administration.org/?article=70
http://www.debian-administration.org/?article=70
http://www.debian-administration.org/?article=70
http://www.debian-administration.org/articles/70/testnet
http://www.debian-administration.org/articles/70/testnet
http://www.debian-administration.org/?article=70
http://www.debian-administration.org/?article=70
http://www.debian-administration.org/?article=70
http://www.debian-administration.org/?article=128
http://www.debian-administration.org/?article=128

After installation

realizing, after a reboot, that it did not detect or configure the network hardware properly and you need
to travel a long distance to bring the system up again. Of course, having the system serial console 6 in the
system connected to a console or terminal server should also help debug reboot issues remotely.

Change the BIOS (again)
Remember the section called “Choose a BIOS password”? Well, then you should now, once you do not
need to boot from removable media, to change the default BIOS setup so that it only boots from the hard
drive. Make sure you will not lose the BIOS password, otherwise, in the event of a hard disk failure you
will not be able to return to the BIOS and change the setup so you can recover it using, for example, a
CD-ROM.

Another less secure but more convenient way is to change the setup to have the system boot up from the
hard disk and, if it fails, try removable media. By the way, this is often done because most people don't
use the BIOS password that often; it's easily forgotten.

Set a LILO or GRUB password
Anybody can easily get a root-shell and change your passwords by entering

<name-of-your-bootimage> init=/bin/sh

at the boot prompt. After changing the passwords and rebooting the system, the person has unlimited root-
access and can do anything he/she wants to the system. After this procedure you will not have root access
to your system, as you do not know the root password.

To make sure that this cannot happen, you should set a password for the boot loader. You can choose
between a global password or a password for a certain image.

For LILO you need to edit the config file /etc/lilo.conf and add a password and restricted
line as in the example below.

 image=/boot/2.2.14-vmlinuz
 label=Linux
 read-only
 password=hackme
 restricted

Then, make sure that the configuration file is not world readable to prevent local users from reading
the password. When done, rerun lilo. Omitting the restricted line causes lilo to always prompt for
a password, regardless of whether LILO was passed parameters. The default permissions for /etc/
lilo.conf grant read and write permissions to root, and enable read-only access for lilo.conf's
group, root.

If you use GRUB instead of LILO, edit /boot/grub/menu.lst and add the following two lines at
the top (substituting, of course hackme with the desired password). This prevents users from editing the
boot items. timeout 3 specifies a 3 second delay before grub boots the default item.

 timeout 3

6 Setting up a serial console is beyond the scope of this document, for more information read the Serial HOWTO [http://www.tldp.org/HOWTO/Se-
rial-HOWTO.html] and the Remote Serial Console HOWTO [http://www.tldp.org/HOWTO/Remote-Serial-Console-HOWTO/index.html].

21

http://www.tldp.org/HOWTO/Serial-HOWTO.html
http://www.tldp.org/HOWTO/Serial-HOWTO.html
http://www.tldp.org/HOWTO/Serial-HOWTO.html
http://www.tldp.org/HOWTO/Remote-Serial-Console-HOWTO/index.html
http://www.tldp.org/HOWTO/Remote-Serial-Console-HOWTO/index.html

After installation

 password hackme

To further harden the integrity of the password, you may store the password in an encrypted form. The
utility grub-md5-crypt generates a hashed password which is compatible with GRUB's encrypted pass-
word algorithm (MD5). To specify in grub that an MD5 format password will be used, use the following
directive:

 timeout 3
 password --md5 1bw0ez$tljnxxKLfMzmnDVaQWgjP0

The --md5 parameter was added to instruct grub to perform the MD5 authentication process. The provided
password is the MD5 encrypted version of hackme. Using the MD5 password method is preferable to
choosing its clear-text counterpart. More information about grub passwords may be found in the grub-
doc package.

Disable root prompt on the initramfs
Note: This applies to the default kernels provided for releases after Debian 3.1

Linux 2.6 kernels provide a way to access a root shell while booting which will be presented during
loading the initramfs on error. This is helpful to permit the administrator to enter a rescue shell with root
permissions. This shell can be used to manually load modules when autodetection fails. This behavior is
the default for initramfs-tools generated initramfs. The following message will appear:

 "ALERT! /dev/sda1 does not exist. Dropping to a shell!

In order to remove this behavior you need to set the following boot argument:panic=0. Add this to the
variable GRUB_CMDLINE_LINUX in /etc/default/grub and issue update-grub or to the append
section of /etc/lilo.conf.

Remove root prompt on the kernel
Note: This does not apply to the kernels provided for Debian 3.1 as the timeout for the kernel delay has
been changed to 0.

Linux 2.4 kernels provide a way to access a root shell while booting which will be presented just after
loading the cramfs file system. A message will appear to permit the administrator to enter an executable
shell with root permissions, this shell can be used to manually load modules when autodetection fails. This
behavior is the default for initrd's linuxrc. The following message will appear:

 Press ENTER to obtain a shell (waits 5 seconds)

In order to remove this behavior you need to change /etc/mkinitrd/mkinitrd.conf and set:

 # DELAY The number of seconds the linuxrc script should wait to
 # allow the user to interrupt it before the system is brought up
 DELAY=0

Then regenerate your ramdisk image. You can do this for example with:

22

After installation

 # cd /boot
 # mkinitrd -o initrd.img-2.4.18-k7 /lib/modules/2.4.18-k7

or (preferred):

 # dpkg-reconfigure -plow kernel-image-2.4.x-yz

Restricting console login access
Some security policies might force administrators to log in to the system through the console with their
user/password and then become superuser (with su or sudo). This policy is implemented in Debian by
editing the /etc/pam.d/login and the /etc/securetty when using PAM:

/etc/pam.d/login In older Debian releases you would need to edit login.defs, and use the
CONSOLE variable which defines a file or list of terminals on which root logins are allowed. enables the
pam_securetty.so module. This module, when properly configured will not ask for a password when the
root user tries to login on an insecure console, rejecting access as this user.

securetty The /etc/securetty is a configuration file that belongs to the login package. by adding/
removing the terminals to which root access will be allowed. If you wish to allow only local console access
then you need console, ttyX Or ttyvX in GNU/FreeBSD, and ttyE0 in GNU/KNetBSD. and vc/X (if using
devfs devices), you might want to add also ttySX Or comX in GNU/Hurd, cuaaX in GNU/FreeBSD, and
ttyXX in GNU/KNetBSD. if you are using a serial console for local access (where X is an integer, you
might want to have multiple instances. The default configuration for Wheezy The default configuration
in woody includes 12 local tty and vc consoles, as well as the console device but does not allow remote
logins. In sarge the default configuration provides 64 consoles for tty and vc consoles. includes many tty
devices, serial ports, vc consoles as well as the X server and the console device. You can safely adjust this
if you are not using that many consoles. You can confirm the virtual consoles and the tty devices you have
by reviewing /etc/inittab Look for the getty calls. . For more information on terminal devices read
the Text-Terminal-HOWTO [http://tldp.org/HOWTO/Text-Terminal-HOWTO-6.html]

When using PAM, other changes to the login process, which might include restrictions to users and groups
at given times, can be configured in /etc/pam.d/login. An interesting feature that can be disabled
is the possibility to login with null (blank) passwords. This feature can be limited by removing nullok
from the line:

 auth required pam_unix.so nullok

Restricting system reboots through the con-
sole

If your system has a keyboard attached to it anyone (yes anyone) with physical access to the system can
reboot the system through it without login in just pressing the Ctrl+Alt+Delete keyboard combination,
also known as the three finger salute. This might, or might not, adhere to your security policy.

This is aggravated in environments in which the operating system is running virtualised. In these environ-
ments, the possibility extends to users that have access to the virtual console (which might be accessed
over the network). Also note that, in these environments, this keyboard combination is used constantly
(to open a login shell in some GUI operating systems) and an administrator might virtually send it and
force a system reboot.

23

http://tldp.org/HOWTO/Text-Terminal-HOWTO-6.html
http://tldp.org/HOWTO/Text-Terminal-HOWTO-6.html

After installation

There are two ways to restrict this:

• configure it so that only allowed users can reboot the system,

• disable this feature completely.

If you want to restrict this, you must check the /etc/inittab so that the line that includes ctrlalt-
del calls shutdown with the -a switch.

The default in Debian includes this switch:

 ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -r now

The -a switch, as the shutdown(8) manpage describes,makes it possible to allow some users to shutdown
the system. For this the file /etc/shutdown.allow must be created and the administrator has to
include there the name of users which can boot the system. When the three finger salute combination is
pressed in a console the program will check if any of the users listed in the file are logged in. If none of
them is, shutdown will not reboot the system.

If you want to disable the Ctrl+Alt+Del combination you just need to comment the line with the ctrlaltdel
definition in the /etc/inittab.

Remember to run init q after making any changes to the /etc/inittab file for the changes to take
effect.

Restricting the use of the Magic SysRq key
The Magic SysRq key is a key combination that allows users connected to the system console of a Linux
kernel to perform some low-level commands. These low-level commands are sent by pressing simultane-
ously Alt+SysRq and a command key. The SysRq key in many keyboards is labeled as the Print Screen key.

Since the Etch release, the Magic SysRq key feature is enabled in the Linux kernel to allow console users
certain privileges. You can confirm this by checking if the /proc/sys/kernel/sysrq exists and
reviewing its value:

$ cat /proc/sys/kernel/sysrq
438

The default value shown above allows all of the SysRq functions except for the possibility of sending
signals to processes. For example, it allow users connected to the console to remount all systems read-
only, reboot the system or cause a kernel panic. In all the features are enabled, or in older kernels (earlier
than 2.6.12) the value will be just 1.

You should disable this functionality ifaccess to the console is not restricted to authorised users: the console
is connected to a modem line, there is easy physical access to the system or it is running in a virtualised
environment and other users access the console. To do this edit the /etc/sysctl.conf and add the
following lines:

Disables the magic SysRq key
kernel.sysrq = 0

For more information, read security chapter in the Remote Serial Console HOWTO [http://
tldp.org/HOWTO/Remote-Serial-Console-HOWTO/security-sysrq.html], Kernel SysRQ documenta-

24

http://tldp.org/HOWTO/Remote-Serial-Console-HOWTO/security-sysrq.html
http://tldp.org/HOWTO/Remote-Serial-Console-HOWTO/security-sysrq.html
http://tldp.org/HOWTO/Remote-Serial-Console-HOWTO/security-sysrq.html
https://www.kernel.org/doc/Documentation/admin-guide/sysrq.rst

After installation

tion [https://www.kernel.org/doc/Documentation/admin-guide/sysrq.rst]. and the Magic_SysRq_key
wikipedia entry [http://en.wikipedia.org/wiki/Magic_SysRq_key].

Mounting partitions the right way
When mounting an Ext file system (ext2, ext3 or ext4), there are several additional options you can
apply to the mount call or to /etc/fstab. For instance, this is my fstab entry for the /tmp partition:

 /dev/hda7 /tmp ext2 defaults,nosuid,noexec,nodev 0 2

You see the difference in the options sections. The option nosuid ignores the setuid and setgid bits
completely, while noexec forbids execution of any program on that mount point, and nodev ignores
device files. This sounds great, but it:

• only applies to ext2 or ext3 file systems

• can be circumvented easily

The noexec option prevents binaries from being executed directly, but was easily circumvented in earlier
versions of the kernel:

 alex@joker:/tmp# mount | grep tmp
 /dev/hda7 on /tmp type ext2 (rw,noexec,nosuid,nodev)
 alex@joker:/tmp# ./date
 bash: ./date: Permission denied
 alex@joker:/tmp# /lib/ld-linux.so.2 ./date
 Sun Dec 3 17:49:23 CET 2000

Newer versions of the kernel do however handle the noexec flag properly:

 angrist:/tmp# mount | grep /tmp
 /dev/hda3 on /tmp type ext3 (rw,noexec,nosuid,nodev)
 angrist:/tmp# ./date
 bash: ./tmp: Permission denied
 angrist:/tmp# /lib/ld-linux.so.2 ./date
 ./date: error while loading shared libraries: ./date: failed to map segment
 from shared object: Operation not permitted

However, many script kiddies have exploits which try to create and execute files in /tmp. If they do not
have a clue, they will fall into this pit. In other words, a user cannot be tricked into executing a trojanized
binary in /tmp e.g. when /tmp is accidentally added into the local PATH.

Also be forewarned, some script might depend on /tmp being executable. Most notably, Debconf has
(had?) some issues regarding this, for more information see http://bugs.debian.org/116448.

The following is a more thorough example. A note, though: /var could be set noexec, but some software
7 keeps its programs under in /var. The same applies to the nosuid option.

7 Some of this includes the package manager dpkg since the installation (post,pre) and removal (post,pre) scripts are at /var/lib/dpkg/ and
Smartlist

25

https://www.kernel.org/doc/Documentation/admin-guide/sysrq.rst
https://www.kernel.org/doc/Documentation/admin-guide/sysrq.rst
http://en.wikipedia.org/wiki/Magic_SysRq_key
http://en.wikipedia.org/wiki/Magic_SysRq_key
http://en.wikipedia.org/wiki/Magic_SysRq_key
http://bugs.debian.org/116448

After installation

/dev/sda6 /usr ext3 defaults,ro,nodev 0 2
/dev/sda12 /usr/share ext3 defaults,ro,nodev,nosuid 0 2
/dev/sda7 /var ext3 defaults,nodev,usrquota,grpquota 0 2
/dev/sda8 /tmp ext3 defaults,nodev,nosuid,noexec,usrquota,grpquota 0 2
/dev/sda9 /var/tmp ext3 defaults,nodev,nosuid,noexec,usrquota,grpquota 0 2
/dev/sda10 /var/log ext3 defaults,nodev,nosuid,noexec 0 2
/dev/sda11 /var/account ext3 defaults,nodev,nosuid,noexec 0 2
/dev/sda13 /home ext3 rw,nosuid,nodev,exec,auto,nouser,async,usrquota,grpquota 0 2
/dev/fd0 /mnt/fd0 ext3 defaults,users,nodev,nosuid,noexec 0 0
/dev/fd0 /mnt/floppy vfat defaults,users,nodev,nosuid,noexec 0 0
/dev/hda /mnt/cdrom iso9660 ro,users,nodev,nosuid,noexec 0 0

Setting /tmp noexec
Be careful if setting /tmp noexec when you want to install new software, since some programs might use
it for installation. apt is one such program (see http://bugs.debian.org/116448) if not configured properly
APT::ExtractTemplates::TempDir (see apt-extracttemplates(1)). You can set this variable in /
etc/apt/apt.conf to another directory with exec privileges other than /tmp.

Setting /usr read-only
If you set /usr read-only you will not be able to install new packages on your Debian GNU/Linux system.
You will have to first remount it read-write, install the packages and then remount it read-only. apt can
be configured to run commands before and after installing packages, so you might want to configure it
properly.

To do this modify /etc/apt/apt.conf and add:

 DPkg
 {
 Pre-Invoke { "mount /usr -o remount,rw" };
 Post-Invoke { "mount /usr -o remount,ro" };
 };

Note that the Post-Invoke may fail with a "/usr busy" error message. This happens mainly when you are
using files during the update that got updated. You can find these programs by running

lsof +L1

Stop or restart these programs and run the Post-Invoke manually. Beware! This means you'll likely need
to restart your X session (if you're running one) every time you do a major upgrade of your system. You
might want to reconsider whether a read-only /usr is suitable for your system. See also this discussion
on debian-devel about read-only [http://lists.debian.org/debian-devel/2001/11/threads.html#00212].

Providing secure user access

User authentication: PAM
PAM (Pluggable Authentication Modules) allows system administrators to choose how applications au-
thenticate users. Note that PAM can do nothing unless an application is compiled with support for PAM.

26

http://bugs.debian.org/116448
http://lists.debian.org/debian-devel/2001/11/threads.html#00212
http://lists.debian.org/debian-devel/2001/11/threads.html#00212
http://lists.debian.org/debian-devel/2001/11/threads.html#00212

After installation

Most of the applications that are shipped with Debian have this support built in (Debian did not have PAM
support before 2.2). The current default configuration for any PAM-enabled service is to emulate UNIX
authentication (read /usr/share/doc/libpam0g/Debian-PAM-MiniPolicy.gz for more in-
formation on how PAM services should work in Debian).

Each application with PAM support provides a configuration file in /etc/pam.d/ which can be used
to modify its behavior:

• what backend is used for authentication.

• what backend is used for sessions.

• how do password checks behave.

The following description is far from complete, for more information you might want to read the Lin-
ux-PAM Guides [https://packages.debian.org/sid/libpam-doc] as a reference. This documentation is avail-
able in the system if you install the libpam-doc at /usr/share/doc/libpam-doc/html/.

PAM offers you the possibility to go through several authentication steps at once, without the user's knowl-
edge. You could authenticate against a Berkeley database and against the normal passwd file, and the user
only logs in if the authentication succeeds in both. You can restrict a lot with PAM, just as you can open
your system doors very wide. So be careful. A typical configuration line has a control field as its second
element. Generally it should be set to requisite, which returns a login failure if one module fails.

Password security in PAM
Review the /etc/pam.d/common-password, included by /etc/pam.d/passwd8 This file is in-
cluded by other files in /etc/pam.d/ to define the behaviour of password use in subsystems that grant
access to services in the machine, like the console login (login), graphical login managers (such as gdm
or lightdm), and remote login (such as sshd). This definition is

You have to make sure that the pam_unix.so module uses the "sha512" option to use encrypted passwords.
This is the default in Debian Squeeze.

The line with the definition of the pam_unix module will look something like:

 password [success=1 default=ignore] pam_unix.so nullok obscure minlen=8 sha512

This definition:

• Enforces password encryption when storing passwords, using the SHA-512 hash function (option
sha512),

• Enables password complexity checks (option obscure) as defined in the pam_unix(8) manpage,

• Imposes a minimum password length (option min) of 8.

You have to ensure that encrypted passwords are used in PAM applications, since this helps protect against
dictionary cracks. Using encryption also makes it possible to use passwords longer than 8 characters.

Since this module is also used to define how passwords are changed (it is included by chpasswd) you can
strengthen the password security in the system by installing libpam-cracklib and introducing this definition
in the /etc/pam.d/common-password configuration file:

8 In old Debian releases the configuration of the modules was defined directly in /etc/pam.d/passwd.

27

https://packages.debian.org/sid/libpam-doc
https://packages.debian.org/sid/libpam-doc
https://packages.debian.org/sid/libpam-doc

After installation

 # Be sure to install libpam-cracklib first or you will not be able to log in
 password required pam_cracklib.so retry=3 minlen=12 difok=3
 password [success=1 default=ignore] pam_unix.so obscure minlen=8 sha512 use_authok

So, what does this incantation do? The first line loads the cracklib PAM module, which provides password
strength-checking, prompts for a new password with a minimum size 9 of 12 characters, and difference of
at least 3 characters from the old password, and allows 3 retries. Cracklib depends on a wordlist package
(such as wenglish, wspanish, wbritish, ...), so make sure you install one that is appropriate for your language
or cracklib might not be useful to you at all.

The second line (using the pam_unix.so module) is the default configuration in Debian, as described
above, save for the use_authok option. The use_authok option is required if pam_unix.so is stacked after
pam_cracklib.so, and is used to hand over the password from the previous module. Otherwise, the user
would be prompted for the password twice.

For more information about setting up Cracklib, read the pam_cracklib(8) manpage and the article Linux
Password Security with pam_cracklib [http://www.deer-run.com/~hal/sysadmin/pam_cracklib.html] by
Hal Pomeranz.

By enabling the cracklib PAM module you setup a policy that forces uses to use strong passwords.

Alternatively, you can setup and configure PAM modules to use double factor authentication such as:
libpam-barada, libpam-google-authenticator, libpam-oath, libpam-otpw, libpam-poldi, libpam-usb or lib-
pam-yubico. The configuration of these modules would make it possible to access the system using exter-
nal authentication mechanisms such as smartcards, external USB keys, or One-Time-Passwords generated
by external applications running, for example, in the user's mobile phone.

Please note that these restrictions apply to all users but not to the password changes done by the root user.
The root user will be able to set up any password (any length or complexity) for personal use or others
regardless of the restrictions defined here.

User access control in PAM
To make sure that the user root can only log into the system from local terminals, the following line should
be enabled in /etc/pam.d/login:

 auth requisite pam_securetty.so

Then you should modify the list of terminals on which direct root login is allowed in /etc/securetty
(as described in the section called “Restricting console login access ”). Alternatively, you could enable the
pam_access module and modify /etc/security/access.conf which allows for a more general
and fine-tuned access control, but (unfortunately) lacks decent log messages (logging within PAM is not
standardized and is particularly unrewarding problem to deal with). We'll return to access.conf a little
later.

User limits in PAM
The following line should be enabled in /etc/pam.d/login to set up user resource limits.

9 The minlen option is not entirely straightforward and is not exactly the number of characters in the password. A tradeoff can be defined between
complexity and length by adjusting the "credit" parameters of different character classes. For more information read the pam_cracklib(8) manpage.

28

http://www.deer-run.com/~hal/sysadmin/pam_cracklib.html
http://www.deer-run.com/~hal/sysadmin/pam_cracklib.html
http://www.deer-run.com/~hal/sysadmin/pam_cracklib.html

After installation

 session required pam_limits.so

This restricts the system resources that users are allowed (see below in the section called “Limiting resource
usage: the limits.conf file”). For example, you could restrict the number of concurrent logins (of a
given group of users, or system-wide), number of processes, memory size etc.

Control of su in PAM
If you want to protect su, so that only some people can use it to become root on your system, you need to
add a new group "wheel" to your system (that is the cleanest way, since no file has such a group permission
yet). Add root and the other users that should be able to su to the root user to this group. Then add the
following line to /etc/pam.d/su:

 auth requisite pam_wheel.so group=wheel debug

This makes sure that only people from the group "wheel" can use su to become root. Other users will not
be able to become root. In fact they will get a denied message if they try to become root.

If you want only certain users to authenticate at a PAM service, this is quite easy to achieve by using
files where the users who are allowed to login (or not) are stored. Imagine you only want to allow users
'ref' to log in via ssh. So you put them into /etc/sshusers-allowed and write the following into
/etc/pam.d/ssh:

 auth required pam_listfile.so item=user sense=allow file=/etc/sshusers-allowed onerr=fail

Temporary directories in PAM
Since there have been a number of so called insecure tempfile vulnerabilities, thttpd is one example (see
DSA-883-1 [http://www.debian.org/security/2005/dsa-883]), the libpam-tmpdir is a good package to in-
stall. All you have to do is add the following to /etc/pam.d/common-session:

 session optional pam_tmpdir.so

There has also been a discussion about adding this by default in Debian configuration, but it s. See http://
lists.debian.org/debian-devel/2005/11/msg00297.html for more information.

Configuration for undefined PAM applications
Finally, but not least, create /etc/pam.d/other and enter the following lines:

 auth required pam_securetty.so
 auth required pam_unix_auth.so
 auth required pam_warn.so
 auth required pam_deny.so
 account required pam_unix_acct.so
 account required pam_warn.so
 account required pam_deny.so
 password required pam_unix_passwd.so
 password required pam_warn.so

29

http://www.debian.org/security/2005/dsa-883
http://www.debian.org/security/2005/dsa-883
http://lists.debian.org/debian-devel/2005/11/msg00297.html
http://lists.debian.org/debian-devel/2005/11/msg00297.html

After installation

 password required pam_deny.so
 session required pam_unix_session.so
 session required pam_warn.so
 session required pam_deny.so

These lines will provide a good default configuration for all applications that support PAM (access is
denied by default).

Limiting resource usage: the limits.conf file
You should really take a serious look into this file. Here you can define user resource limits. In old releases
this configuration file was /etc/limits.conf, but in newer releases (with PAM) the /etc/secu-
rity/limits.conf configuration file should be used instead.

If you do not restrict resource usage, any user with a valid shell in your system (or even an intruder who
compromised the system through a service or a daemon going awry) can use up as much CPU, memory,
stack, etc. as the system can provide. This resource exhaustion problem can be fixed by the use of PAM.

There is a way to add resource limits to some shells (for example, bash has ulimit, see bash(1)), but since
not all of them provide the same limits and since the user can change shells (see chsh(1)) it is better to
place the limits on the PAM modules as they will apply regardless of the shell used and will also apply
to PAM modules that are not shell-oriented.

Resource limits are imposed by the kernel, but they need to be configured through the limits.conf
and the PAM configuration of the different services need to load the appropriate PAM. You can check
which services are enforcing limits by running:

$ find /etc/pam.d/ \! -name "*.dpkg*" | xargs -- grep limits |grep -v ":#"

Commonly, login, ssh and the graphic session managers (gdm, kdm or xdm) should enforce user limits
but you might want to do this in other PAM configuration files, such as cron, to prevent system daemons
from taking over all system resources.

The specific limits settings you might want to enforce depend on your system's resources, that's one of the
main reasons why no limits are enforced in the default installation.

For example, the configuration example below enforces a 100 process limit for all users (to prevent fork
bombs) as well as a limit of 10MB of memory per process and a limit of 10 simultaneous logins. Users in
the adm group have higher limits and can produce core files if they want to (there is only a soft limit).

* soft core 0
* hard core 0
* hard rss 1000
* hard memlock 1000
* hard nproc 100
* - maxlogins 1
* hard data 102400
* hard fsize 2048
@adm hard core 100000
@adm hard rss 100000
@adm soft nproc 2000
@adm hard nproc 3000
@adm hard fsize 100000

30

After installation

@adm - maxlogins 10

These would be the limits a default user (including system daemons) would have:

$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) 102400
file size (blocks, -f) 2048
max locked memory (kbytes, -l) 10000
max memory size (kbytes, -m) 10000
open files (-n) 1024
pipe size (512 bytes, -p) 8
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 100
virtual memory (kbytes, -v) unlimited

And these are the limits for an administrative user:

$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) 102400
file size (blocks, -f) 100000
max locked memory (kbytes, -l) 100000
max memory size (kbytes, -m) 100000
open files (-n) 1024
pipe size (512 bytes, -p) 8
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 2000
virtual memory (kbytes, -v) unlimited

For more information read:

• PAM reference guide for available modules [https://web.archive.org/web/20030601112932/http://
www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/pam-6.html]

• PAM configuration article [https://web.archive.org/web/20030217012148/http://www.samag.com/doc-
uments/s=1161/sam0009a/0009a.htm].

• Seifried's Securing Linux Step by Step [http://seifried.org/security/os/linux/20020324-securing-lin-
ux-step-by-step.html] on the Limiting users overview section.

• LASG [http://seifried.org/lasg/users/] in the Limiting and monitoring users section.

User login actions: edit /etc/login.defs
The next step is to edit the basic configuration and action upon user login. Note that this file is not part
of the PAM configuration, it's a configuration file honored by login and su programs, so it doesn't make
sense tuning it for cases where neither of the two programs are at least indirectly called (the getty program
which sits on the consoles and offers the initial login prompt does invoke login).

31

https://web.archive.org/web/20030601112932/http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/pam-6.html
https://web.archive.org/web/20030601112932/http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/pam-6.html
https://web.archive.org/web/20030601112932/http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/pam-6.html
https://web.archive.org/web/20030217012148/http://www.samag.com/documents/s=1161/sam0009a/0009a.htm
https://web.archive.org/web/20030217012148/http://www.samag.com/documents/s=1161/sam0009a/0009a.htm
https://web.archive.org/web/20030217012148/http://www.samag.com/documents/s=1161/sam0009a/0009a.htm
http://seifried.org/security/os/linux/20020324-securing-linux-step-by-step.html
http://seifried.org/security/os/linux/20020324-securing-linux-step-by-step.html
http://seifried.org/security/os/linux/20020324-securing-linux-step-by-step.html
http://seifried.org/lasg/users/
http://seifried.org/lasg/users/

After installation

 FAILLOG_ENAB yes

If you enable this variable, failed logins will be logged. It is important to keep track of them to catch
someone who tries a brute force attack.

 LOG_UNKFAIL_ENAB no

If you set this variable to 'yes' it will record unknown usernames if the login failed. It is best if you use
'no' (the default) since, otherwise, user passwords might be inadvertenly logged here (if a user mistypes
and they enter their password as the username). If you set it to 'yes', make sure the logs have the proper
permissions (640 for example, with an appropriate group setting such as adm).

 SYSLOG_SU_ENAB yes

This one enables logging of su attempts to syslog. Quite important on serious machines but note that
this can create privacy issues as well.

 SYSLOG_SG_ENAB yes

The same as SYSLOG_SU_ENAB but applies to the sg program.

 ENCRYPT_METHOD SHA512

As stated above, encrypted passwords greatly reduce the problem of dictionary attacks, since you can
use longer passwords. This definition has to be consistent with the value defined in /etc/pam.d/com-
mon-password.

User login actions: edit /etc/pam.d/login
You can adjust the login configuration file to implement an stricter policy. For example, you can change
the default configuration and increase the delay time between login prompts. The default configuration
sets a 3 seconds delay:

auth optional pam_faildelay.so delay=3000000

Increasing the delay value to a higher value to make it harder to use the terminal to log in using brute
force. If a wrong password is typed in, the possible attacker (or normal user!) has to wait longer seconds
to get a new login prompt, which is quite time consuming when you test passwords. For example, if you
set delay=10000000, users will have to wait 10 seconds if they type a wrong password.

In this file you can also set the system to present a message to users before a user logs in. The default is
disabled, as shown below:

auth required pam_issue.so issue=/etc/issue

If required by your security policy, this file can be used to show a standard message indicating that access
to the system is restricted and user acess is logged. This kind of disclaimer might be required in some
environments and jurisdictions. To enable it, just include the relevant information in the /etc/issue10

10 The default content of this file provides information about the operating system and version run by the system, which you might not want to
provide to anonymous users.

32

After installation

file and uncomment the line enabling the pam_issue.so module in /etc/pam.d/login. In this file you
can also enable additional features which might be relevant to apply local security policies such as:

• setting rules for which users can access at which times, by enabling the pam_time.so module and con-
figuring /etc/security/time.conf accordingly (disabled by default),

• setup login sessions to use user limits as defined in /etc/security/limits.conf (enabled by
default),

• present the user with the information of previous login information (enabled by default),

• print a message (/etc/motd and /run/motd.dynamic) to users after login in (enabled by default),

Restricting ftp: editing /etc/ftpusers
The /etc/ftpusers file contains a list of users who are not allowed to log into the host using ftp.
Only use this file if you really want to allow ftp (which is not recommended in general, because it uses
clear-text passwords). If your daemon supports PAM, you can also use that to allow and deny users for
certain services.

FIXME (BUG): Is it a bug that the default ftpusers in Debian does not include all the administrative
users (in base-passwd).

A convenient way to add all system accounts to the /etc/ftpusers is to run

$ awk -F : '{if ($3<1000) print $1}' /etc/passwd > /etc/ftpusers

Using su
If you really need users to become the super user on your system, e.g. for installing packages or adding
users, you can use the command su to change your identity. You should try to avoid any login as user root
and instead use su. Actually, the best solution is to remove su and switch to the sudo mechanism which has
a broader logic and more features than su. However, su is more common as it is used on many other Unices.

Using sudo
sudo allows the user to execute defined commands under another user's identity, even as root. If the user
is added to /etc/sudoers and authenticates correctly, the commands defined in /etc/sudoers get
enabled. Violations, such as incorrect passwords or trying to run a program you don't have permission for,
are logged and mailed to root.

Disallow remote administrative access
You should also modify /etc/security/access.conf to disallow remote logins to administrative
accounts. This way users need to invoke su (or sudo) to use any administrative powers and the appropriate
audit trace will always be generated.

You need to add the following line to /etc/security/access.conf, the default Debian configu-
ration file has a sample line commented out:

 -:wheel:ALL EXCEPT LOCAL

33

After installation

Remember to enable the pam_access module for every service (or default configuration) in /etc/
pam.d/ if you want your changes to /etc/security/access.conf honored.

Restricting users's access
Sometimes you might think you need to have users created in your local system in order to provide a given
service (pop3 mail service or ftp). Before doing so, first remember that the PAM implementation in Debian
GNU/Linux allows you to validate users with a wide variety of external directory services (radius, ldap,
etc.) provided by the libpam packages.

If users need to be created and the system can be accessed remotely take into account that users will be
able to log in to the system. You can fix this by giving users a null (/dev/null) shell (it would need to
be listed in /etc/shells). If you want to allow users to access the system but limit their movements,
you can use the /bin/rbash, equivalent to adding the -r option in bash (RESTRICTED SHELL see
bash(1)). Please note that even with restricted shell, a user that access an interactive program (that might
allow execution of a subshell) could be able to bypass the limits of the shell.

Debian currently provides in the unstable release (and might be included in the next stable releases) the
pam_chroot module (in the libpam-chroot). An alternative to it is to chroot the service that provides
remote logging (ssh, telnet). 11

If you wish to restrict when users can access the system you will have to customize /etc/securi-
ty/access.conf for your needs.

Information on how to chroot users accessing the system through the ssh service is described in the section
called “Chroot environment for SSH”.

User auditing
If you are really paranoid you might want to add a system-wide configuration to audit what the users are
doing in your system. This sections presents some tips using diverse utilities you can use.

Input and output audit with script

You can use the script command to audit both what the users run and what are the results of those com-
mands. You cannot setup script as a shell (even if you add it to /etc/shells). But you can have the
shell initialization file run the following:

umask 077
exec script -q -a "/var/log/sessions/$USER"

Of course, if you do this system wide it means that the shell would not continue reading personal initializa-
tion files (since the shell gets overwritten by script). An alternative is to do this in the user's initialization
files (but then the user could remove this, see the comments about this below)

You also need to setup the files in the audit directory (in the example /var/log/sessions/) so that
users can write to it but cannot remove the file. This could be done, for example, by creating the user
session files in advance and setting them with the append-only flag using chattr.

A useful alternative for sysadmins, which includes date information would be:

umask 077

11 libpam-chroot has not been yet thoroughly tested, it does work for login but it might not be easy to set up the environment for other programs

34

After installation

exec script -q -a "/var/log/sessions/$USER-`date +%Y%m%d`"

Using the shell history file

If you want to review what does the user type in the shell (but not what the result of that is) you can setup
a system-wide /etc/profile that configures the environment so that all commands are saved into a
history file. The system-wide configuration needs to be setup in such a way that users cannot remove audit
capabilities from their shell. This is somewhat shell specific so make sure that all users are using a shell
that supports this.

For example, for bash, the /etc/profile could be set as follows 12 :

 HISTFILE=~/.bash_history
 HISTSIZE=10000
 HISTFILESIZE=999999
 # Don't let the users enter commands that are ignored
 # in the history file
 HISTIGNORE=""
 HISTCONTROL=""
 readonly HISTFILE
 readonly HISTSIZE
 readonly HISTFILESIZE
 readonly HISTIGNORE
 readonly HISTCONTROL
 export HISTFILE HISTSIZE HISTFILESIZE HISTIGNORE HISTCONTROL

For this to work, the user can only append information to .bash_history file. You need also to set
the append-only option using chattr program for .bash_history for all users. 13.

Note that you could introduce the configuration above in the user's .profile. But then you would need
to setup permissions properly in such a way that prevents the user from modifying this file. This includes:
having the user's home directories not belong to the user (since the user would be able to remove the file
otherwise) but at the same time allow the user to read the .profile configuration file and write on the
.bash_history. It would be good to set the immutable flag (also using chattr) for .profile too
if you do it this way.

Complete user audit with accounting utilities

The previous example is a simple way to configure user auditing but might be not useful for complex
systems or for those in which users do not run shells at all (or exclusively). If this is your case, you need
to look at acct, the accounting utilities. These utilities will log all the commands run by users or processes
in the system, at the expense of disk space.

When activating accounting, all the information on processes and users is kept under /var/account/,
more specifically in the pacct. The accounting package includes some tools (sa, ac and lastcomm) to
analyse this data.

Other user auditing methods

If you are completely paranoid and want to audit every user's command, you could take bash source code,
edit it and have it send all that the user typed into another file. Or have ttysnoop constantly monitor any new

12 Setting HISTSIZE to a very large number can cause issues under some shells since the history is kept in memory for every user session. You
might be safer if you set this to a high-enough value and backup user's history files (if you need all of the user's history for some reason)
13 Without the append-only flag users would be able to empty the contents of the history file running > .bash_history

35

After installation

ttys 14 and dump the output into a file. Other useful program is snoopy (see also github: https://github.com/
a2o/snoopy) which is a user-transparent program that hooks in as a library providing a wrapper around
execve() calls, any command executed is logged to syslogd using the authpriv facility (usually
stored at /var/log/auth.log).

Reviewing user profiles
If you want to see what users are actually doing when they logon to the system you can use the wtmp
database that includes all login information. This file can be processed with several utilities, amongst them
sac which can output a profile on each user showing in which timeframe they usually log on to the system.

In case you have accounting activated, you can also use the tools provided by it in order to determine when
the users access the system and what do they execute.

Setting users umasks
Depending on your user policy you might want to change how information is shared between users, that
is, what the default permissions of new files created by users are.

Debian's default umask setting is 022 this means that files (and directories) can be read and accessed by
the user's group and by any other users in the system. This definition is set in the standard configuration
file /etc/profile which is used by all shells.

If Debian's default value is too permissive for your system you will have to change the umask setting for
all the shells. More restrictive umask settings include 027 (no access is allowed to new files for the other
group, i.e. to other users in the system) or 077 (no access is allowed to new files to the members the user's
group). Debian (by default15) creates one group per user so that only the user is included in its group.
Consequently 027 and 077 are equivalent as the user's group contains only the user.

This change is set by defining a proper umask setting for all users. You can change this by introduc-
ing an umask call in the shell configuration files: /etc/profile (source by all Bourne-compatible
shells), /etc/csh.cshrc, /etc/csh.login, /etc/zshrc and probably some others (depending
on the shells you have installed on your system). You can also change the UMASK setting in /etc/lo-
gin.defs, Of all of these the last one that gets loaded by the shell takes precedence. The order is: the
default system configuration for the user's shell (i.e. /etc/profile and other system-wide configura-
tion files) and then the user's shell (his ~/.profile, ~/.bash_profile, etc...). Some shells, how-
ever, can be executed with a nologin value which might skip sourcing some of those files. See your shell's
manpage for additional information.

For connections that make use of login the UMASK definition in /etc/login.defs is used before
any of the others. However, that value does not apply to user executed programs that do not use login such
as those run through su, cron or ssh.

Don't forget to review and maybe modify the dotfiles under /etc/skel/ since these will be new user's
defaults when created with the adduser command. Debian default dotfiles do not include any umask call
but if there is any in the dotfiles newly created users might a different value.

Note, however that users can modify their own umask setting if they want to, making it more permissive
or more restricted, by changing their own dotfiles.

The libpam-umask package adjusts the users' default umask using PAM. Add the following, after in-
stalling the package, to /etc/pam.d/common-session:

14 Ttys are spawned for local logins and remote logins through ssh and telnet
15 As defined in /etc/adduser.conf (USERGROUPS=yes). You can change this behaviour if you set this value to no, although it is not
recommended

36

github:%20https://github.com/a2o/snoopy
github:%20https://github.com/a2o/snoopy

After installation

session optional pam_umask.so umask=077

Finally, you should consider changing root's default 022 umask (as defined in /root/.bashrc) to a
more strict umask. That will prevent the system administrator from inadvertenly dropping sensitive files
when working as root to world-readable directories (such as /tmp) and having them available for your
average user.

Limiting what users can see/access
FIXME: Content needed. Describe the consequences of changing packages permissions when upgrading
(an admin this paranoid should chroot his users BTW) if not using dpkg-statoverride.

If you need to grant users access to the system with a shell think about it very carefully. A user can, by
default unless in a severely restricted environment (like a chroot jail), retrieve quite a lot of information
from your system including:

• some configuration files in /etc. However, Debian's default permissions for some sensitive files
(which might, for example, contain passwords), will prevent access to critical information. To see which
files are only accessible by the root user for example

find /etc -type f -a -perm 600 -a -uid 0

as superuser.

• your installed packages, either by looking at the package database, at the /usr/share/doc directory
or by guessing by looking at the binaries and libraries installed in your system.

• some log files at /var/log. Note also that some log files are only accessible to root and the adm
group (try

find /var/log -type f -a -perm 640

) and some are even only available to the root user (try

find /var/log -type f -a -perm
 600 -a -uid 0

).

What can a user see in your system? Probably quite a lot of things, try this (take a deep breath):

 find / -type f -a -perm +006 2>/dev/null
 find / -type d -a -perm +007 2>/dev/null

The output is the list of files that a user can see and the accessable directories.

Limiting access to other user's information

If you still grant shell access to users you might want to limit what information they can view from other
users. Users with shell access have a tendency to create quite a number of files under their $HOMEs:
mailboxes, personal documents, configuration of X/GNOME/KDE applications...

In Debian each user is created with one associated group, and no two users belong to the same group. This
is the default behavior: when an user account is created, a group of the same name is created too, and the

37

After installation

user is assigned to it. This avoids the concept of a common users group which might make it more difficult
for users to hide information from other users.

However, users' $HOME directories are created with 0755 permissions (group-readable and world-read-
able). The group permissions is not an issue since only the user belongs to the group, however the world
permissions might (or might not) be an issue depending on your local policy.

You can change this behavior so that user creation provides different $HOME permissions. To change
the behavior for new users when they get created, change DIR_MODE in the configuration file /etc/
adduser.conf to 0750 (no world-readable access).

Users can still share information, but not directly in their $HOME directories unless they change its per-
missions.

Note that disabling world-readable home directories will prevent users from creating their personal web
pages in the ~/public_html directory, since the web server will not be able to read one component
in the path - namely their $HOME directory. If you want to permit users to publish HTML pages in their
~/public_html, then change DIR_MODE to 0751. This will allow the web server to access the final
public_html directory (which itself should have a mode of 0755) and provide the content published
by users. Of course, we are only talking about a default configuration here; users can generally tune modes
of their own files completely to their liking, or you could keep content intended for the web in a separate
location which is not a subdirectory of user's $HOME directory.

Generating user passwords
There are many cases when an administrator needs to create many user accounts and provide passwords
for all of them. Of course, the administrator could easily just set the password to be the same as the user's
account name, but that would not be very sensitive security-wise. A better approach is to use a password
generating program. Debian provides makepasswd, apg and pwgen packages which provide programs (the
name is the same as the package) that can be used for this purpose. Makepasswd will generate true random
passwords with an emphasis on security over pronounceability while pwgen will try to make meaningless
but pronounceable passwords (of course this might depend on your mother language). Apg has algorithms
to provide for both (there is a client/server version for this program but it is not included in the Debian
package).

Passwd does not allow non-interactive assignation of passwords (since it uses direct tty access). If you
want to change passwords when creating a large number of users you can create them using adduser with
the --disabled-login option and then use usermod or chpasswd16 (both from the passwd package
so you already have them installed). If you want to use a file with all the information to make users as a
batch process you might be better off using newusers.

Checking user passwords
User passwords can sometimes become the weakest link in the security of a given system. This is due to
some users choosing weak passwords for their accounts (and the more of them that have access to it the
greater the chances of this happening). Even if you established checks with the cracklib PAM module and
password limits as described in the section called “User authentication: PAM” users will still be able to use
weak passwords. Since user access might include remote shell access (over ssh, hopefully) it's important to
make password guessing as hard as possible for the remote attackers, especially if they were somehow able
to collect important information such as usernames or even the passwd and shadow files themselves.

16 Chpasswd cannot handle MD5 password generation so it needs to be given the password in encrypted form before using it, with the

-e

option.

38

After installation

A system administrator must, given a big number of users, check if the passwords they have are consistent
with the local security policy. How to check? Try to crack them as an attacker would if having access to
the hashed passwords (the /etc/shadow file).

An administrator can use john or crack (both are brute force password crackers) together with an appro-
priate wordlist to check users' passwords and take appropriate action when a weak password is detected.
You can search for Debian GNU packages that contain word lists using apt-cache search wordlist, or
visit some Internet wordlist sites.

Logging off idle users

Idle users are usually a security problem, a user might be idle maybe because he's out to lunch or because
a remote connection hung and was not re-established. For whatever the reason, idle users might lead to
a compromise:

• because the user's console might be unlocked and can be accessed by an intruder.

• because an attacker might be able to re-attach to a closed network connection and send commands to
the remote shell (this is fairly easy if the remote shell is not encrypted as in the case of telnet).

Some remote systems have even been compromised through an idle (and detached) screen.

Automatic disconnection of idle users is usually a part of the local security policy that must be enforced.
There are several ways to do this:

• If bash is the user shell, a system administrator can set a default TMOUT value (see bash(1)) which will
make the shell automatically log off remote idle users. Note that it must be set with the -o option or
users will be able to change (or unset) it.

• Install timeoutd and configure /etc/timeouts according to your local security policy. The daemon
will watch for idle users and time out their shells accordingly.

• Install autolog and configure it to remove idle users.

The timeoutd or autolog daemons are the preferred method since, after all, users can change their default
shell or can, after running their default shell, switch to another (uncontrolled) shell.

Using tcpwrappers
TCP wrappers were developed when there were no real packet filters available and access control was
needed. Nevertheless, they're still very interesting and useful. The TCP wrappers allow you to allow or
deny a service for a host or a domain and define a default allow or deny rule (all performed on the appli-
cation level). If you want more information take a look at hosts_access(5) manual page.

Many services installed in Debian are either:

• launched through the tcpwrapper service (tcpd)

• compiled with libwrapper support built-in.

On the one hand, for services configured in /etc/inetd.conf (this includes telnet, ftp, netbios, swat
and finger) you will see that the configuration file executes /usr/sbin/tcpd first. On the other hand, even if
a service is not launched by the inetd superdaemon, support for the tcp wrappers rules can be compiled into

39

After installation

it. Services compiled with tcp wrappers in Debian include ssh, portmap, in.talk, rpc.statd, rpc.mountd,
gdm, oaf (the GNOME activator daemon), nessus and many others.

To see which packages use tcpwrappers 17 try:

 $ apt-cache rdepends libwrap0

Take this into account when running tcpdchk (a very useful TCP wrappers config file rule and syntax
checker). When you add stand-alone services (that are directly linked with the wrapper library) into the
hosts.deny and hosts.allow files, tcpdchk will warn you that it is not able to find the mentioned
services since it only looks for them in /etc/inetd.conf (the manpage is not totally accurate here).

Now, here comes a small trick, and probably the smallest intrusion detection system available. In general,
you should have a decent firewall policy as a first line, and tcp wrappers as the second line of defense. One
little trick is to set up a SPAWN 18 command in /etc/hosts.deny that sends mail to root whenever
a denied service triggers wrappers:

 ALL: ALL: SPAWN (\
 echo -e "\n\
 TCP Wrappers\: Connection refused\n\
 By\: $(uname -n)\n\
 Process\: %d (pid %p)\n\
 User\: %u\n\
 Host\: %c\n\
 Date\: $(date)\n\
 " | /usr/bin/mail -s "Connection to %d blocked" root) &

Beware: The above printed example is open to a DoS attack by making many connections in a short period
of time. Many emails mean a lot of file I/O by sending only a few packets.

The importance of logs and alerts
It is easy to see that the treatment of logs and alerts is an important issue in a secure system. Suppose a
system is perfectly configured and 99% secure. If the 1% attack occurs, and there are no security measures
in place to, first, detect this and, second, raise alarms, the system is not secure at all.

Debian GNU/Linux provides some tools to perform log analysis, most notably swatch, 19 logcheck or log-
analysis (all will need some customisation to remove unnecessary things from the report). It might also be
useful, if the system is nearby, to have the system logs printed on a virtual console. This is useful since
you can (from a distance) see if the system is behaving properly. Debian's /etc/syslog.conf comes
with a commented default configuration; to enable it uncomment the lines and restart syslogd (/etc/
init.d/syslogd restart):

 daemon,mail.*;\

17 On older Debian releases you might need to do this:

 $ apt-cache showpkg libwrap0 | egrep '^[[:space:]]' | sort -u | \
 sed 's/,libwrap0$//;s/^[[:space:]]\+//'
18 be sure to use uppercase here since spawn will not work
19 there's a very good article on it written by http://www.spitzner.net/swatch.html

40

http://www.spitzner.net/swatch.html

After installation

 news.=crit;news.=err;news.=notice;\
 .=debug;.=info;\
 .=notice;.=warn /dev/tty8

To colorize the logs, you could take a look at colorize, ccze or glark. There is a lot to log analysis
that cannot be fully covered here, so a good information resource would be books should as http://book-
s.google.com/books?id=UyktqN6GnWEC. In any case, even automated tools are no match for the best
analysis tool: your brain.

Using and customizing logcheck
The logcheck package in Debian is divided into the three packages logcheck (the main program), logcheck-
database (a database of regular expressions for the program) and logtail (prints loglines that have not yet
been read). The Debian default (in /etc/cron.d/logcheck) is that logcheck is run every hour and
after reboots.

This tool can be quite useful if properly customized to alert the administrator of unusual sys-
tem events. Logcheck can be fully customized so that it sends mails based on events found in
the logs and worthy of attention. The default installation includes profiles for ignored events and
policy violations for three different setups (workstation, server and paranoid). The Debian pack-
age includes a configuration file /etc/logcheck/logcheck.conf, sourced by the program,
that defines which user the checks are sent to. It also provides a way for packages that provide
services to implement new policies in the directories: /etc/logcheck/cracking.d/_pack-
agename_, /etc/logcheck/violations.d/_packagename_, /etc/logcheck/viola-
tions.ignore.d/_packagename_, /etc/logcheck/ignore.d.paranoid/_package-
name_, /etc/logcheck/ignore.d.server/_packagename_, and /etc/logcheck/ig-
nore.d.workstation/_packagename_. However, not many packages currently do so. If you have
a policy that can be useful for other users, please send it as a bug report for the appropriate package (as a
wishlist bug). For more information read /usr/share/doc/logcheck/README.Debian.

The best way to configure logcheck is to edit its main configuration file /etc/logcheck/
logcheck.conf after installation. Change the default user (root) to whom reports should be mailed.
You should set the reportlevel in there, too. logcheck-database has three report levels of increasing verbosi-
ty: workstation, server, paranoid. "server" being the default level, paranoid is only recommended for high-
security machines running as few services as possible and workstation for relatively sheltered, non-critical
machines. If you wish to add new log files just add them to /etc/logcheck/logcheck.logfiles.
It is tuned for default syslog install.

Once this is done you might want to check the mails that are sent, for the first few days/weeks/months. If
you find you are sent messages you do not wish to receive, just add the regular expressions (see regex(7)
and egrep(1)) that correspond to these messages to the /etc/logcheck/ignore.d.reportlev-
el/local. Try to match the whole logline. Details on howto write rules are explained in /usr/share/
doc/logcheck-database/README.logcheck-database.gz. It's an ongoing tuning process;
once the messages that are sent are always relevant you can consider the tuning finished. Note that if
logcheck does not find anything relevant in your system it will not mail you even if it does run (so you
might get a mail only once a week, if you are lucky).

Configuring where alerts are sent
Debian comes with a standard syslog configuration (in /etc/syslog.conf) that logs messages to the
appropriate files depending on the system facility. You should be familiar with this; have a look at the
syslog.conf file and the documentation if not. If you intend to maintain a secure system you should
be aware of where log messages are sent so they do not go unnoticed.

41

http://books.google.com/books?id=UyktqN6GnWEC
http://books.google.com/books?id=UyktqN6GnWEC

After installation

For example, sending messages to the console also is an interesting setup useful for many production-level
systems. But for many such systems it is also important to add a new machine that will serve as loghost
(i.e. it receives logs from all other systems).

Root's mail should be considered also, many security controls (like snort) send alerts to root's mailbox.
This mailbox usually points to the first user created in the system (check /etc/aliases). Take care to
send root's mail to some place where it will be read (either locally or remotely).

There are other role accounts and aliases on your system. On a small system, it's probably simplest to
make sure that all such aliases point to the root account, and that mail to root is forwarded to the system
administrator's personal mailbox.

FIXME: It would be interesting to tell how a Debian system can send/receive SNMP traps related to
security problems (jfs). Check: snmptrapfmt, snmp and snmpd.

Using a loghost
A loghost is a host which collects syslog data remotely over the network. If one of your machines is
cracked, the intruder is not able to cover the tracks, unless hacking the loghost as well. So, the loghost
should be especially secure. Making a machine a loghost is simple. Just start the syslogd with

syslogd -r

and a new loghost is born. In order to do this permanently in Debian, edit /etc/default/syslogd
and change the line

SYSLOGD=""

to

SYSLOGD="-r"

Next, configure the other machines to send data to the loghost. Add an entry like the following to /etc/
syslog.conf:

 facility.level @your_loghost

See the documentation for what to use in place of facility and level (they should not be entered verbatim
like this). If you want to log everything remotely, just write:

 . @your_loghost

into your syslog.conf. Logging remotely as well as locally is the best solution (the attacker might
presume to have covered his tracks after deleting the local log files). See the syslog(3), syslogd(8) and
syslog.conf(5) manpages for additional information.

Log file permissions
It is not only important to decide how alerts are used, but also who has read/modify access to the log files
(if not using a remote loghost). Security alerts which the attacker can change or disable are not worth much
in the event of an intrusion. Also, you have to take into account that log files might reveal quite a lot of
information about your system to an intruder who has access to them.

42

After installation

Some log file permissions are not perfect after the installation (but of course this really depends on your
local security policy). First /var/log/lastlog and /var/log/faillog do not need to be readable
by normal users. In the lastlog file you can see who logged in recently, and in the faillog you see
a summary of failed logins. The author recommends chmod 660 for both. Take a brief look at your log
files and decide very carefully which log files to make readable/writable for a user with a UID other than
0 and a group other than 'adm' or 'root'. You can easily check this in your system with:

 # find /var/log -type f -exec ls -l {} \; | cut -c 17-35 |sort -u
 (see to what users do files in /var/log belong)
 # find /var/log -type f -exec ls -l {} \; | cut -c 26-34 |sort -u
 (see to what groups do files in /var/log belong)
 # find /var/log -perm +004
 (files which are readable by any user)
 # find /var/log \! -group root \! -group adm -exec ls -ld {} \;
 (files which belong to groups not root or adm)

To customize how log files are created you will probably have to customize the program that generates
them. If the log file gets rotated, however, you can customize the behavior of creation and rotation.

Adding kernel patches
Debian GNU/Linux provides some of the patches for the Linux kernel that enhance its security. These
include:

• Linux Intrusion Detection [http://www.lids.org] provided in the kernel-patch-2.4-lids package. This ker-
nel patch makes the process of hardening your Linux system easier by allowing you to restrict, hide and
protect processes, even from root. It implements mandatory access control capabilities.

• Linux Trustees [http://trustees.sourceforge.net/], provided in package trustees. This patch adds a decent
advanced permissions management system to your Linux kernel. Special objects (called trustees) are
bound to every file or directory, and are stored in kernel memory, which allows fast lookup of all per-
missions.

• NSA Enhanced Linux (in package selinux). Backports of the SElinux-enabled packages are available
at https://salsa.debian.org/selinux-team. More information available at SElinux in Debian Wiki page
[http://wiki.debian.org/SELinux], at Manoj Srivastava's [http://www.golden-gryphon.com/software/se-
curity/selinux.xhtml] and Russell Cookers's [http://www.coker.com.au/selinux/] SElinux websites.

• The kernel patch http://people.redhat.com/mingo/exec-shield provided in the kernel-patch-exec-shield
package. This patch provides protection against some buffer overflows (stack smashing attacks).

• The Grsecurity patch [http://www.grsecurity.net/], provided by the kernel-patch-2.4-grsecurity and ker-
nel-patch-grsecurity2 packages 20 implements Mandatory Access Control through RBAC, provides

20 Notice that this patch conflicts with patches already included in Debian's 2.4 kernel source package. You will need to use the stock vanilla kernel.
You can do this with the following steps:

apt-get install kernel-source-2.4.22 kernel-patch-debian-2.4.22
tar xjf /usr/src/kernel-source-2.4.22.tar.bz2
cd kernel-source-2.4.22
/usr/src/kernel-patches/all/2.4.22/unpatch/debian

For more information see http://bugs.debian.org/194225, http://bugs.debian.org/199519, http://bugs.debian.org/206458, http://bugs.de-
bian.org/203759, http://bugs.debian.org/204424, http://bugs.debian.org/210762, http://bugs.debian.org/211213, and the http://lists.debian.org/de-
bian-devel/2003/09/msg01133.html

43

http://www.lids.org
http://www.lids.org
http://trustees.sourceforge.net/
http://trustees.sourceforge.net/
https://salsa.debian.org/selinux-team
http://wiki.debian.org/SELinux
http://wiki.debian.org/SELinux
http://www.golden-gryphon.com/software/security/selinux.xhtml
http://www.golden-gryphon.com/software/security/selinux.xhtml
http://www.golden-gryphon.com/software/security/selinux.xhtml
http://www.coker.com.au/selinux/
http://www.coker.com.au/selinux/
http://people.redhat.com/mingo/exec-shield
http://www.grsecurity.net/
http://www.grsecurity.net/
http://bugs.debian.org/194225
http://bugs.debian.org/199519
http://bugs.debian.org/206458
http://bugs.debian.org/203759
http://bugs.debian.org/203759
http://bugs.debian.org/204424
http://bugs.debian.org/210762
http://bugs.debian.org/211213
http://lists.debian.org/debian-devel/2003/09/msg01133.html
http://lists.debian.org/debian-devel/2003/09/msg01133.html

After installation

buffer overflow protection through PaX, ACLs, network randomness (to make OS fingerprinting more
difficult) and many more features [http://www.grsecurity.net/features.php].

• The kernel-patch-adamantix provides the patches developed for Adamantix [http://www.adaman-
tix.org/], a Debian-based distribution. This kernel patch for the 2.4.x kernel releases introduces some
security features such as a non-executable stack through the use of http://pageexec.virtualave.net/ and
mandatory access control based on http://www.rsbac.org/. Other features include: http://www.vanheus-
den.com/Linux/sp/, AES encrypted loop device, MPPE support and an IPSEC v2.6 backport.

• cryptoloop-source. This patches allows you to use the functions of the kernel crypto API to create en-
crypted filesystems using the loopback device.

• IPSEC kernel support (in package linux-patch-openswan). If you want to use the IPsec protocol with
Linux, you need this patch. You can create VPNs with this quite easily, even to Windows machines, as
IPsec is a common standard. IPsec capabilities have been added to the 2.5 development kernel, so this
feature will be present by default in the future Linux Kernel 2.6. Homepage: http://www.openswan.org.
FIXME: The latest 2.4 kernels provided in Debian include a backport of the IPSEC code from 2.5.
Comment on this.

The following security kernel patches are only available for old kernel versions in woody and are depre-
cated:

• http://acl.bestbits.at/ (ACLs) for Linux provided in the package kernel-patch-acl. This kernel patch adds
access control lists, an advanced method for restricting access to files. It allows you to control fine-
grain access to files and directory.

• The http://www.openwall.com/linux/ linux kernel patch by Solar Designer, provided in the ker-
nel-patch-2.2.18-openwall package. This is a useful set of kernel restrictions, like restricted links, FIFOs
in /tmp, a restricted /proc file system, special file descriptor handling, non-executable user stack
area and other features. Note: This package applies to the 2.2 release, no packages are available for the
2.4 release patches provided by Solar.

• kernel-patch-int. This patch also adds cryptographic capabilities to the Linux kernel, and was useful
with Debian releases up to Potato. It doesn't work with Woody, and if you are using Sarge or a newer
version, you should use a more recent kernel which includes these features already.

However, some patches have not been provided in Debian yet. If you feel that some of these should be
included please ask for it at the http://www.debian.org/devel/wnpp/.

Protecting against buffer overflows
Buffer overflow is the name of a common attack to software 21 which makes use of insufficient boundary
checking (a programming error, most commonly in the C language) in order to execute machine code
through program inputs. These attacks, against server software which listen to connections remotely and
against local software which grant higher privileges to users (setuid or setgid) can result in the com-
promise of any given system.

There are mainly four methods to protect against buffer overflows:

• patch the kernel to prevent stack execution. You can use either: Exec-shield, OpenWall or PaX (included
in the Grsecurity and Adamantix patches).

21 So common, in fact, that they have been the basis of 20% of the reported security vulnerabilities every year, as determined by http://icat.nist.gov/
icat.cfm?function=statistics

44

http://www.grsecurity.net/features.php
http://www.grsecurity.net/features.php
http://www.adamantix.org/
http://www.adamantix.org/
http://www.adamantix.org/
http://pageexec.virtualave.net/
http://www.rsbac.org/
http://www.vanheusden.com/Linux/sp/
http://www.vanheusden.com/Linux/sp/
http://www.openswan.org
http://acl.bestbits.at/
http://www.openwall.com/linux/
http://www.debian.org/devel/wnpp/
http://icat.nist.gov/icat.cfm?function=statistics
http://icat.nist.gov/icat.cfm?function=statistics

After installation

• fix the source code by using tools to find fragments of it that might introduce this vulnerability.

• recompile the source code to introduce proper checks that prevent overflows, using the http://www.re-
search.ibm.com/trl/projects/security/ssp/ patch for GCC (which is used by http://www.adamantix.org)

Debian GNU/Linux, as of the 3.0 release, provides software to introduce all of these methods except for
the protection on source code compilation (but this has been requested in http://bugs.debian.org/213994).

Notice that even if Debian provided a compiler which featured stack/buffer overflow protection all pack-
ages would need to be recompiled in order to introduce this feature. This is, in fact, what the Adamantix
distribution does (among other features). The effect of this new feature on the stability of software is yet
to be determined (some programs or some processor architectures might break due to it).

In any case, be aware that even these workarounds might not prevent buffer overflows since there are ways
to circumvent these, as described in phrack's magazine http://packetstorm.linuxsecurity.com/mag/phrack/
phrack58.tar.gz or in CORE's Advisory http://online.securityfocus.com/archive/1/269246.

If you want to test out your buffer overflow protection once you have implemented it (regardless of the
method) you might want to install the paxtest and run the tests it provides.

Kernel patch protection for buffer overflows
Kernel patches related to buffer overflows include the Openwall patch provides protection against buffer
overflows in 2.2 linux kernels. For 2.4 or newer kernels, you need to use the Exec-shield implementa-
tion, or the PaX implementation (provided in the grsecurity patch, kernel-patch-2.4-grsecurity, and in the
Adamantix patch, kernel-patch-adamantix). For more information on using these patches read the the sec-
tion the section called “Adding kernel patches”.

Testing programs for overflows
The use of tools to detect buffer overflows requires, in any case, of programming experience in order to
fix (and recompile) the code. Debian provides, for example: bfbtester (a buffer overflow tester that brute-
forces binaries through command line and environment overflows). Other packages of interest would also
be rats, pscan, flawfinder and splint.

Secure file transfers
During normal system administration one usually needs to transfer files in and out from the installed
system. Copying files in a secure manner from a host to another can be achieved by using the ssh server
package. Another possibility is the use of ftpd-ssl, a ftp server which uses the Secure Socket Layer to
encrypt the transmissions.

Any of these methods need special clients. Debian does provide client software, such as scp from the ssh
package, which works like rcp but is encrypted completely, so the bad guys cannot even find out WHAT
you copy. There is also a ftp-ssl package for the equivalent server. You can find clients for these software
even for other operating systems (non-UNIX), putty and winscp provide secure copy implementations
for any version of Microsoft's operating system.

Note that using scp provides access to the users to all the file system unless chroot'ed as described in the
section called “Chrooting ssh”. FTP access can be chroot'ed, probably easier depending on you chosen
daemon, as described in the section called “Securing FTP”. If you are worried about users browsing your
local files and want to have encrypted communication you can either use an ftp daemon with SSL support
or combine clear-text ftp and a VPN setup (see the section called “Virtual Private Networks”).

45

http://www.research.ibm.com/trl/projects/security/ssp/
http://www.research.ibm.com/trl/projects/security/ssp/
http://www.adamantix.org
http://bugs.debian.org/213994
http://packetstorm.linuxsecurity.com/mag/phrack/phrack58.tar.gz
http://packetstorm.linuxsecurity.com/mag/phrack/phrack58.tar.gz
http://online.securityfocus.com/archive/1/269246

After installation

File system limits and control

Using quotas
Having a good quota policy is important, as it keeps users from filling up the hard disk(s).

You can use two different quota systems: user quota and group quota. As you probably figured out, user
quota limits the amount of space a user can take up, group quota does the equivalent for groups. Keep this
in mind when you're working out quota sizes.

There are a few important points to think about in setting up a quota system:

• Keep the quotas small enough, so users do not eat up your disk space.

• Keep the quotas big enough, so users do not complain or their mail quota keeps them from accepting
mail over a longer period.

• Use quotas on all user-writable areas, on /home as well as on /tmp.

Every partition or directory to which users have full write access should be quota enabled. Calculate and
assign a workable quota size for those partitions and directories which combines usability and security.

So, now you want to use quotas. First of all you need to check whether you enabled quota support in your
kernel. If not, you will need to recompile it. After this, control whether the package quota is installed. If
not you will need this one as well.

Enabling quota for the respective file systems is as easy as modifying the defaults setting to de-
faults,usrquota in your /etc/fstab file. If you need group quota, substitute usrquota to gr-
pquota. You can also use them both. Then create empty quota.user and quota.group files in the roots of
the file systems you want to use quotas on (e.g.

touch
/home/quota.user /home/quota.group

for a /home file system).

Restart quota by doing

/etc/init.d/quota stop;/etc/init.d/quota
 start

. Now quota should be running, and quota sizes can be set.

Editing quotas for a specific user can be done by

edquota -u <user>

. Group quotas can be modified with

edquota -g <group>

. Then set the soft and hard quota and/or inode quotas as needed.

For more information about quotas, read the quota man page, and the quota mini-howto (/usr/share/
doc/HOWTO/en-html/mini/Quota.html). You may also want to look at pam_limits.so.

46

After installation

The ext2 filesystem specific attributes (chattr/lsattr)
In addition to the usual Unix permissions, the ext2 and ext3 filesystems offer a set of specific attributes
that give you more control over the files on your system. Unlike the basic permissions, these attributes are
not displayed by the usual ls -l command or changed using chmod, and you need two other utilities, lsattr
and chattr (in package e2fsprogs) to manage them. Note that this means that these attributes will usually
not be saved when you backup your system, so if you change any of them, it may be worth saving the
successive chattr commands in a script so that you can set them again later if you have to restore a backup.

Among all available attributes, the two that are most important for increasing security are referenced by
the letters 'i' and 'a', and they can only be set (or removed) by the superuser:

• The 'i' attribute ('immutable'): a file with this attribute can neither be modified nor deleted or renamed
and no link can be created to it, even by the superuser.

• The 'a' attribute ('append'): this attribute has the same effect that the immutable attribute, except that
you can still open the file in append mode. This means that you can still add more content to it but it
is impossible to modify previous content. This attribute is especially useful for the log files stored in /
var/log/, though you should consider that they get moved sometimes due to the log rotation scripts.

These attributes can also be set for directories, in which case everyone is denied the right to modify the
contents of a directory list (e.g. rename or remove a file, ...). When applied to a directory, the append
attribute only allows file creation.

It is easy to see how the 'a' attribute improves security, by giving to programs that are not running as the
superuser the ability to add data to a file without modifying its previous content. On the other hand, the
'i' attribute seems less interesting: after all, the superuser can already use the basic Unix permissions to
restrict access to a file, and an intruder that would get access to the superuser account could always use the
chattr program to remove the attribute. Such an intruder may first be confused when noticing not being
able to remove a file, but you should not assume blindness - after all, the intruder got into your system!
Some manuals (including a previous version of this document) suggest to simply remove the chattr and
lsattr programs from the system to increase security, but this kind of strategy, also known as "security by
obscurity", is to be absolutely avoided, since it provides a false sense of security.

A secure way to solve this problem is to use the capabilities of the Linux kernel, as described in the section
called “Proactive defense”. The capability of interest here is called CAP_LINUX_IMMUTABLE: if you
remove it from the capabilities bounding set (using for example the command lcap CAP_LINUX_IM-
MUTABLE) it won't be possible to change any 'a' or 'i' attribute on your system anymore, even by the su-
peruser ! A complete strategy could be as follows:

• Set the attributes 'a' and 'i' on any file you want;

• Add the command lcap CAP_LINUX_IMMUTABLE (as well as lcap CAP_SYS_MODULE, as suggested
in the section called “Proactive defense”) to one of the startup scripts;

• Set the 'i' attribute on this script and other startup files, as well as on the lcap binary itself;

• Execute the above command manually (or reboot your system to make sure everything works as
planned).

Now that the capability has been removed from the system, an intruder cannot change any attribute on
the protected files, and thus cannot change or remove the files. If the machine is forced to reboot (which
is the only way to restore the capabilities bounding set), it will easily be detected, and the capability will
be removed again as soon as the system restarts anyway. The only way to change a protected file would
be to boot the system in single-user mode or using another bootdisk, two operations that require physical
access to the machine !

47

After installation

Checking file system integrity

Are you sure /bin/login on your hard drive is still the binary you installed there some months ago?
What if it is a hacked version, which stores the entered password in a hidden file or mails it in clear-text
version all over the Internet?

The only method to have some kind of protection is to check your files every hour/day/month (I prefer
daily) by comparing the actual and the old md5sum of this file. Two files cannot have the same md5sum
(the MD5 digest is 128 bits, so the chance that two different files will have the same md5sum is roughly
one in 3.4e3803), so you're on the safe site here, unless someone has also hacked the algorithm that creates
md5sums on that machine. This is, well, extremely difficult and very unlikely. You really should consider
this auditing of your binaries as very important, since it is an easy way to recognize changes at your binaries.

Common tools used for this are sxid, aide (Advanced Intrusion Detection Environment), tripwire, integrit
and samhain. Installing debsums will also help you to check the file system integrity, by comparing the
md5sums of every file against the md5sums used in the Debian package archive. But beware: those files
can easily be changed by an attacker and not all packages provide md5sums listings for the binaries they
provided. For more information please read the section called “Do periodic integrity checks” and the
section called “Taking a snapshot of the system”.

You might want to use locate to index the whole filesystem, if so, consider the implications of that. The
Debian findutils package contains locate which runs as user nobody, and so it only indexes files which
are visible to everybody. However, if you change it's behaviour you will make all file locations visible
to all users. If you want to index all the filesystem (not the bits that the user nobody can see) you can
replace locate with the package slocate. slocate is labeled as a security enhanced version of GNU locate,
but it actually provides additional file-locating functionality. When using slocate, the user only sees the
actually accessible files and you can exclude any files or directories on the system. The slocate package
runs its update process with higher privledges than locate, and indexes every file. Users are then able to
quickly search for every file which they are able to see. slocate doesn't let them see new files; it filters
the output based on your UID.

You might want to use bsign or elfsign. elfsign provides an utility to add a digital signature to an ELF binary
and a second utility to verify that signature. The current implementation uses PKI to sign the checksum
of the binary. The benefits of doing this are that it enables one to determine if a binary has been modified
and who created it. bsign uses GPG, elfsign uses PKI (X.509) certificates (OpenSSL).

Setting up setuid check

The Debian checksecurity package provides a cron job that runs daily in /etc/cron.daily/check-
security22. This cron job will run the /usr/sbin/checksecurity script that will store information of this
changes.

The default behavior does not send this information to the superuser but, instead keeps daily copies of the
changes in /var/log/setuid.changes. You should set the MAILTO variable (in /etc/check-
security.conf) to 'root' to have this information mailed to the superuser. See checksecurity(8) manual
page for more configuration info.

Securing network access
FIXME: More (Debian-specific) content needed.

22 In previous releases, checksecurity was integrated into cron and the file was /etc/cron.daily/standard

48

After installation

Configuring kernel network features
Many features of the kernel can be modified while running by echoing something into the /proc file
system or by using sysctl. By entering /sbin/sysctl -A you can see what you can configure and what the
options are, and it can be modified running

/sbin/sysctl -w variable=value

(see sysctl(8)). Only in rare cases do you need to edit something here, but you can increase security that
way as well. For example:

net/ipv4/icmp_echo_ignore_broadcasts = 1

This is a Windows emulator because it acts like Windows on broadcast ping if this option is set to 1. That
is, ICMP echo requests sent to the broadcast address will be ignored. Otherwise, it does nothing.

If you want to prevent you system from answering ICMP echo requests, just enable this configuration
option:

net/ipv4/icmp_echo_ignore_all = 1

To log packets with impossible addresses (due to wrong routes) on your network use:

/proc/sys/net/ipv4/conf/all/log_martians = 1

For more information on what things can be done with /proc/sys/net/ipv4/* read /usr/src/
linux/Documentation/filesystems/proc.txt. All the options are described thoroughly un-
der /usr/src/linux/Documentation/networking/ip-sysctl.txt23.

Configuring syncookies
This option is a double-edged sword. On the one hand it protects your system against syn packet flooding;
on the other hand it violates defined standards (RFCs).

net/ipv4/tcp_syncookies = 1

If you want to change this option each time the kernel is working you need to change it in /etc/net-
work/options by setting syncookies=yes. This will take effect when ever /etc/init.d/net-
working is run (which is typically done at boot time) while the following will have a one-time effect
until the reboot:

echo 1 > /proc/sys/net/ipv4/tcp_syncookies

This option will only be available if the kernel is compiled with the CONFIG_SYNCOOKIES. All Debian
kernels are compiled with this option builtin but you can verify it running:

23 In Debian the kernel-source-version packages copy the sources to /usr/src/kernel-source-version.tar.bz2, just substitute
version to whatever kernel version sources you have installed

49

After installation

$ sysctl -A |grep syncookies
net/ipv4/tcp_syncookies = 1

For more information on TCP syncookies read http://cr.yp.to/syncookies.html.

Securing the network on boot-time
When setting configuration options for the kernel networking you need configure it so that it's loaded
every time the system is restarted. The following example enables many of the previous options as well
as other useful options.

There are actually two ways to configure your network at boot time. You can configure /etc/
sysctl.conf (see: sysctl.conf(5)) or introduce a script that is called when the interface is enabled. The
first option will be applied to all interfaces, whileas the second option allows you to configure this on a
per-interface basis.

An example of a /etc/sysctl.conf configuration that will secure some network options at the kernel
level is shown below. Notice the comment in it, /etc/network/options might override some values
if they contradict those in this file when the /etc/init.d/networking is run (which is later than
procps on the startup sequence).

#
/etc/sysctl.conf - Configuration file for setting system variables
See sysctl.conf (5) for information. Also see the files under
Documentation/sysctl/, Documentation/filesystems/proc.txt, and
Documentation/networking/ip-sysctl.txt in the kernel sources
(/usr/src/kernel-$version if you have a kernel-package installed)
for more information of the values that can be defined here.

#
Be warned that /etc/init.d/procps is executed to set the following
variables. However, after that, /etc/init.d/networking sets some
network options with builtin values. These values may be overridden
using /etc/network/options.
#
#kernel.domainname = example.com

Additional settings - adapted from the script contributed
by Dariusz Puchala (see below)
Ignore ICMP broadcasts
net/ipv4/icmp_echo_ignore_broadcasts = 1
#
Ignore bogus ICMP errors
net/ipv4/icmp_ignore_bogus_error_responses = 1

Do not accept ICMP redirects (prevent MITM attacks)
net/ipv4/conf/all/accept_redirects = 0
or
Accept ICMP redirects only for gateways listed in our default
gateway list (enabled by default)
net/ipv4/conf/all/secure_redirects = 1
#
Do not send ICMP redirects (we are not a router)

50

http://cr.yp.to/syncookies.html

After installation

net/ipv4/conf/all/send_redirects = 0
#
Do not forward IP packets (we are not a router)
Note: Make sure that /etc/network/options has 'ip_forward=no'
net/ipv4/conf/all/forwarding = 0
#
Enable TCP Syn Cookies
Note: Make sure that /etc/network/options has 'syncookies=yes'
net/ipv4/tcp_syncookies = 1
#
Log Martian Packets
net/ipv4/conf/all/log_martians = 1
#
Turn on Source Address Verification in all interfaces to
prevent some spoofing attacks
Note: Make sure that /etc/network/options has 'spoofprotect=yes'
net/ipv4/conf/all/rp_filter = 1
#
Do not accept IP source route packets (we are not a router)
net/ipv4/conf/all/accept_source_route = 0

To use the script you need to first create the script, for example, in /etc/network/interface-se-
cure (the name is given as an example) and call it from /etc/network/interfaces like this:

auto eth0
iface eth0 inet static
 address xxx.xxx.xxx.xxx
 netmask 255.255.255.xxx
 broadcast xxx.xxx.xxx.xxx
 gateway xxx.xxx.xxx.xxx
 pre-up /etc/network/interface-secure

In this example, before the interface eth0 is enabled the script will be called to secure all network interfaces
as shown below.

#!/bin/sh -e
Script-name: /etc/network/interface-secure
#
Modifies some default behavior in order to secure against
some TCP/IP spoofing & attacks for all interfaces.
#
Contributed by Dariusz Puchalak.
#
echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts
 # Broadcast echo protection enabled.
echo 0 > /proc/sys/net/ipv4/conf/all/forwarding
 # IP forwarding disabled.
echo 1 > /proc/sys/net/ipv4/tcp_syncookies # TCP syn cookies protection enabled.
echo 1 >/proc/sys/net/ipv4/conf/all/log_martians # Log strange packets.
(this includes spoofed packets, source routed packets, redirect packets)
but be careful with this on heavy loaded web servers.
echo 1 > /proc/sys/net/ipv4/icmp_ignore_bogus_error_responses
 # Bad error message protection enabled.

51

After installation

IP spoofing protection.
echo 1 > /proc/sys/net/ipv4/conf/all/rp_filter

Disable ICMP redirect acceptance.
echo 0 > /proc/sys/net/ipv4/conf/all/accept_redirects
echo 0 > /proc/sys/net/ipv4/conf/all/send_redirects

Disable source routed packets.
echo 0 > /proc/sys/net/ipv4/conf/all/accept_source_route

exit 0

Notice that you can actually have per-interface scripts that will enable different network options for dif-
ferent interfaces (if you have more than one), just change the pre-up line to:

pre-up /etc/network/interface-secure $IFACE

And use a script which will only apply changes to a specific interface, not to all of the interfaces available.
Notice that some networking options can only be enabled globally, however. A sample script is this one:

#!/bin/sh -e
Script-name: /etc/network/interface-secure
#
Modifies some default behavior in order to secure against
some TCP/IP spoofing & attacks for a given interface.
#
Contributed by Dariusz Puchalak.
#

IFACE=$1
if [-z "$IFACE"] ; then
 echo "$0: Must give an interface name as argument!"
 echo "Usage: $0 <interface>"
 exit 1
fi

if [! -e /proc/sys/net/ipv4/conf/$IFACE/]; then
 echo "$0: Interface $IFACE does not exit (cannot find /proc/sys/net/ipv4/conf/)"
 exit 1
fi

echo 0 > /proc/sys/net/ipv4/conf/$IFACE/forwarding # IP forwarding disabled.
echo 1 >/proc/sys/net/ipv4/conf/$IFACE/log_martians # Log strange packets.
(this includes spoofed packets, source routed packets, redirect packets)
but be careful with this on heavy loaded web servers.

IP spoofing protection.
echo 1 > /proc/sys/net/ipv4/conf/$IFACE/rp_filter

Disable ICMP redirect acceptance.
echo 0 > /proc/sys/net/ipv4/conf/$IFACE/accept_redirects
echo 0 > /proc/sys/net/ipv4/conf/$IFACE/send_redirects

52

After installation

Disable source routed packets.
echo 0 > /proc/sys/net/ipv4/conf/$IFACE/accept_source_route

exit 0

An alternative solution is to create an init.d script and have it run on bootup (using update-rc.d to
create the appropriate rc.d links).

Configuring firewall features
In order to have firewall capabilities, either to protect the local system or others behind it, the kernel needs
to be compiled with firewall capabilities. The standard Debian 2.2 kernel (Linux 2.2) provides the packet
filter ipchains firewall, Debian 3.0 standard kernel (Linux 2.4) provides the stateful packet filter iptables
(netfilter) firewall.

In any case, it is pretty easy to use a kernel different from the one provided by Debian. You can find pre-
compiled kernels as packages you can easily install in the Debian system. You can also download the
kernel sources using the kernel-source-X and build custom kernel packages using make-kpkg from the
kernel-package package.

Setting up firewalls in Debian is discussed more thoroughly in the section called “Adding firewall capa-
bilities”.

Disabling weak-end hosts issues
Systems with more than one interface on different networks can have services configured so that they will
bind only to a given IP address. This usually prevents access to services when requested through any other
address. However, this does not mean (although it is a common misconception) that the service is bound
to a given hardware address (interface card). 24

It seems, however, not to work with services bound to 127.0.0.1, you might need to write the tests using
raw sockets.

This is not an ARP issue and it's not an RFC violation (it's called weak end host in RFC1122 [ftp://ft-
p.isi.edu/in-notes/rfc1122.txt], (in the section 3.3.4.2). Remember, IP addresses have nothing to do with
physical interfaces.

On 2.2 (and previous) kernels this can be fixed with:

echo 1 > /proc/sys/net/ipv4/conf/all/hidden
echo 1 > /proc/sys/net/ipv4/conf/eth0/hidden
echo 1 > /proc/sys/net/ipv4/conf/eth1/hidden

24 To reproduce this (example provided by Felix von Leitner on the Bugtraq mailing list):

 host a (eth0 connected to eth0 of host b):
 ifconfig eth0 10.0.0.1
 ifconfig eth1 23.0.0.1
 tcpserver -RHl localhost 23.0.0.1 8000 echo fnord

 host b:
 ifconfig eth0 10.0.0.2
 route add 23.0.0.1 gw 10.0.0.1
 telnet 23.0.0.1 8000

53

ftp://ftp.isi.edu/in-notes/rfc1122.txt
ftp://ftp.isi.edu/in-notes/rfc1122.txt
ftp://ftp.isi.edu/in-notes/rfc1122.txt

After installation

.....

On later kernels this can be fixed either with:

• iptables rules.

• properly configured routing. 25

• kernel patching. 26

Along this text there will be many occasions in which it is shown how to configure some services (sshd
server, apache, printer service...) in order to have them listening on any given address, the reader should
take into account that, without the fixes given here, the fix would not prevent accesses from within the
same (local) network. 27

FIXME: Comments on Bugtraq indicate there is a Linux specific method to bind to a given interface.

FIXME: Submit a bug against netbase so that the routing fix is standard behavior in Debian?

Protecting against ARP attacks
When you don't trust the other boxes on your LAN (which should always be the case, because it's the safest
attitude) you should protect yourself from the various existing ARP attacks.

As you know the ARP protocol is used to link IP addresses to MAC addresses (see ftp://ftp.isi.edu/in-
notes/rfc826.txt for all the details). Every time you send a packet to an IP address an ARP resolution is
done (first by looking into the local ARP cache then if the IP isn't present in the cache by broadcasting an
ARP query) to find the target's hardware address. All the ARP attacks aim to fool your box into thinking
that box B's IP address is associated to the intruder's box's MAC address; Then every packet that you want
to send to the IP associated to box B will be send to the intruder's box...

Those attacks (ARP cache poisoning, ARP spoofing...) allow the attacker to sniff the traffic even on
switched networks, to easily hijack connections, to disconnect any host from the network... ARP attacks
are powerful and simple to implement, and several tools exists, such as arpspoof from the dsniff package
or http://arpoison.sourceforge.net/.

However, there is always a solution:

• Use a static ARP cache. You can set up "static" entries in your ARP cache with:

 arp -s host_name hdwr_addr

25 The fact that this behavior can be changed through routing was described by Matthew G. Marsh in the Bugtraq thread:

eth0 = 1.1.1.1/24
eth1 = 2.2.2.2/24

ip rule add from 1.1.1.1/32 dev lo table 1 prio 15000
ip rule add from 2.2.2.2/32 dev lo table 2 prio 16000

ip route add default dev eth0 table 1
ip route add default dev eth1 table 2
26 There are some patches available for this behavior as described in Bugtraq's thread at http://www.linuxvirtualserver.org/~julian/#hidden and
http://www.fefe.de/linux-eth-forwarding.diff.
27 An attacker might have many problems pulling the access through after configuring the IP-address binding while not being on the same broadcast
domain (same network) as the attacked host. If the attack goes through a router it might be quite difficult for the answers to return somewhere.

54

ftp://ftp.isi.edu/in-notes/rfc826.txt
ftp://ftp.isi.edu/in-notes/rfc826.txt
http://arpoison.sourceforge.net/
http://www.linuxvirtualserver.org/~julian/#hidden
http://www.fefe.de/linux-eth-forwarding.diff

After installation

By setting static entries for each important host in your network you ensure that nobody will create/mod-
ify a (fake) entry for these hosts (static entries don't expire and can't be modified) and spoofed ARP
replies will be ignored.

• Detect suspicious ARP traffic. You can use arpwatch, karpski or more general IDS that can also detect
suspicious ARP traffic (snort, http://www.prelude-ids.org...).

• Implement IP traffic filtering validating the MAC address.

Taking a snapshot of the system
Before putting the system into production system you could take a snapshot of the whole system. This
snapshot could be used in the event of a compromise (see Chapter 11, After the compromise (incident
response)). You should remake this upgrade whenever the system is upgraded, especially if you upgrade
to a new Debian release.

For this you can use a writable removable-media that can be set up read-only, this could be a floppy disk
(read protected after use), a CD on a CD-ROM unit (you could use a rewritable CD-ROM so you could
even keep backups of md5sums in different dates), or a USB disk or MMC card (if your system can access
those and they can be write protected).

The following script creates such a snapshot:

#!/bin/bash
/bin/mount /dev/fd0 /mnt/floppy
trap "/bin/umount /dev/fd0" 0 1 2 3 9 13 15
if [! -f /usr/bin/md5sum] ; then
 echo "Cannot find md5sum. Aborting."
 exit 1
fi
/bin/cp /usr/bin/md5sum /mnt/floppy
echo "Calculating md5 database"
>/mnt/floppy/md5checksums.txt
for dir in /bin/ /sbin/ /usr/bin/ /usr/sbin/ /lib/ /usr/lib/
do
 find $dir -type f | xargs /usr/bin/md5sum >>/mnt/floppy/md5checksums-lib.txt
done
echo "post installation md5 database calculated"
if [! -f /usr/bin/sha1sum] ; then
 echo "Cannot find sha1sum"
 echo "WARNING: Only md5 database will be stored"
else
 /bin/cp /usr/bin/sha1sum /mnt/floppy
 echo "Calculating SHA-1 database"
 >/mnt/floppy/sha1checksums.txt
 for dir in /bin/ /sbin/ /usr/bin/ /usr/sbin/ /lib/ /usr/lib/
 do
 find $dir -type f | xargs /usr/bin/sha1sum >>/mnt/floppy/sha1checksums-lib.txt
 done
 echo "post installation sha1 database calculated"
fi
exit 0

55

http://www.prelude-ids.org

After installation

Note that the md5sum binary (and sha1sum, if available) is placed on the floppy drive so it can be used
later on to check the binaries of the system (just in case it gets trojaned). However, if you want to make
sure that you are running a legitimate binary, you might want to either compile a static copy of the md5sum
binary and use that one (to prevent a trojaned libc library from interfering with the binary) or to use the
snapshot of md5sums only from a clean environment such as a rescue CD-ROM or a Live-CD (to prevent
a trojaned kernel from interfering). I cannot stress this enough: if you are on a compromised system you
cannot trust its output, see Chapter 11, After the compromise (incident response).

The snapshot does not include the files under /var/lib/dpkg/info which includes the MD5 hash-
es of installed packages (in files ending with .md5sums). You could copy this information along too,
however you should notice:

• the md5sums files include the md5sum of all files provided by the Debian packages, not just system
binaries. As a consequence, that database is bigger (5 Mb versus 600 Kb in a Debian GNU/Linux system
with a graphical system and around 2.5 Gb of software installed) and will not fit in small removable
media (like a single floppy disk, but would probably fit in a removable USB memory).

• not all Debian packages provide md5sums for the files installed since it is not (currently) mandated
policy. Notice, however, that you can generate the md5sums for all packages using debsums after you've
finished the system installation:

debsums --generate=missing,keep

Once the snapshot is done you should make sure to set the medium read-only. You can then store it for
backup or place it in the drive and use it to drive a cron check nightly comparing the original md5sums
against those on the snapshot.

If you do not want to setup a manual check you can always use any of the integrity systems available that
will do this and more, for more information please read the section called “Do periodic integrity checks”.

Other recommendations

Do not use software depending on svgalib
SVGAlib is very nice for console lovers like me, but in the past it has been proven several times that it is
very insecure. Exploits against zgv were released, and it was simple to become root. Try to prevent using
SVGAlib programs wherever possible.

56

Chapter 5. Securing services running
on your system

Services can be secured in a running system in two ways:

• Making them only accessible at the access points (interfaces) they need to be in.

• Configuring them properly so that they can only be used by legitimate users in an authorized manner.

Restricting services so that they can only be accessed from a given place can be done by restricting access
to them at the kernel (i.e. firewall) level, configure them to listen only on a given interface (some services
might not provide this feature) or using some other methods, for example the Linux vserver patch (for
2.4.16) can be used to force processes to use only one interface.

Regarding the services running from inetd (telnet, ftp, finger, pop3...) it is worth noting that inetd can
be configured so that services only listen on a given interface (using service@ip syntax) but that's an
undocumented feature. One of its substitutes, the xinetd meta-daemon includes a bind option just for
this matter. See ixnetd.conf(5) manual page.

service nntp
{
 socket_type = stream
 protocol = tcp
 wait = no
 user = news
 group = news
 server = /usr/bin/env
 server_args = POSTING_OK=1 PATH=/usr/sbin/:/usr/bin:/sbin/:/bin
+/usr/sbin/snntpd logger -p news.info
 bind = 127.0.0.1
}

The following sections detail how specific individual services can be configured properly depending on
their intended use.

Securing ssh
If you are still running telnet instead of ssh, you should take a break from this manual and change this. Ssh
should be used for all remote logins instead of telnet. In an age where it is easy to sniff Internet traffic and
get clear-text passwords, you should use only protocols which use cryptography. So, perform an apt-
get install ssh on your system now.

Encourage all the users on your system to use ssh instead of telnet, or even better, uninstall telnet/telnetd.
In addition you should avoid logging into the system using ssh as root and use alternative methods to
become root instead, like su or sudo. Finally, the sshd_config file, in /etc/ssh, should be modified
to increase security as well:

• ListenAddress 192.168.0.1 Have ssh listen only on a given interface, just in case you have
more than one (and do not want ssh available on it) or in the future add a new network card (and don't
want ssh connections from it).

57

Securing services run-
ning on your system

• PermitRootLogin no Try not to permit Root Login wherever possible. If anyone wants to become
root via ssh, now two logins are needed and the root password cannot be brute forced via SSH.

• Port 666 or ListenAddress 192.168.0.1:666 Change the listen port, so the intruder cannot
be completely sure whether a sshd daemon runs (be forewarned, this is security by obscurity).

• PermitEmptyPasswords no Empty passwords make a mockery of system security.

• AllowUsers alex ref me@somewhere Allow only certain users to have access via ssh to this
machine. user@host can also be used to restrict a given user from accessing only at a given host.

• AllowGroups wheel admin Allow only certain group members to have access via ssh to this
machine. AllowGroups and AllowUsers have equivalent directives for denying access to a machine.
Not surprisingly they are called "DenyUsers" and "DenyGroups".

• PasswordAuthentication yes It is completely your choice what you want to do. It is more
secure to only allow access to the machine from users with ssh-keys placed in the ~/.ssh/autho-
rized_keys file. If you want so, set this one to "no".

• Disable any form of authentication you do not really need, if you do not use, for example Rhost-
sRSAAuthentication, HostbasedAuthentication, KerberosAuthentication or
RhostsAuthentication you should disable them, even if they are already by default (see the
manpage sshd_config(5) manual page).

• Protocol 2 Disable the protocol version 1, since it has some design flaws that make it easier to crack
passwords. For more information read http://earthops.net/ssh-timing.pdf or the http://xforce.iss.net/sta-
tic/6449.php.

• Banner /etc/some_file Add a banner (it will be retrieved from the file) to users connecting to
the ssh server. In some countries sending a warning before access to a given system about unauthorized
access or user monitoring should be added to have legal protection.

You can also restrict access to the ssh server using pam_listfile or pam_wheel in the PAM control
file. For example, you could keep anyone not listed in /etc/loginusers away by adding this line to
/etc/pam.d/ssh:

auth required pam_listfile.so sense=allow onerr=fail item=user file=/etc/loginusers

As a final note, be aware that these directives are from a OpenSSH configuration file. Right now, there
are three commonly used SSH daemons, ssh1, ssh2, and OpenSSH by the OpenBSD people. Ssh1 was the
first ssh daemon available and it is still the most commonly used (there are rumors that there is even a
Windows port). Ssh2 has many advantages over ssh1 except it is released under a closed-source license.
OpenSSH is completely free ssh daemon, which supports both ssh1 and ssh2. OpenSSH is the version
installed on Debian when the package ssh is chosen.

You can read more information on how to set up SSH with PAM support in the http://lists.debian.org/de-
bian-security/2001/11/msg00395.html.

Chrooting ssh
Currently OpenSSH does not provide a way to chroot automatically users upon connection (the commer-
cial version does provide this functionality). However there is a project to provide this functionality for
OpenSSH too, see http://chrootssh.sourceforge.net, it is not currently packaged for Debian, though. You
could use, however, the pam_chroot module as described in the section called “Restricting users's ac-
cess”.

58

http://earthops.net/ssh-timing.pdf
http://xforce.iss.net/static/6449.php
http://xforce.iss.net/static/6449.php
http://lists.debian.org/debian-security/2001/11/msg00395.html
http://lists.debian.org/debian-security/2001/11/msg00395.html
http://chrootssh.sourceforge.net

Securing services run-
ning on your system

In the section called “Chroot environment for SSH” you can find several options to make a chroot envi-
ronment for SSH.

Ssh clients
If you are using an SSH client against the SSH server you must make sure that it supports the same protocols
that are enforced on the server. For example, if you use the mindterm package, it only supports protocol
version 1. However, the sshd server is, by default, configured to only accept version 2 (for security reasons).

Disallowing file transfers
If you do not want users to transfer files to and from the ssh server you need to restrict access to the sftp-
serverand the scp access. You can restrict sftp-server by configuring the proper Subsystem in the /
etc/ssh/sshd_config.

You can also chroot users (using libpam-chroot so that, even if file transfer is allowed, they are limited to
an environment which does not include any system files.

Restricing access to file transfer only
You might want to restrict access to users so that they can only do file transfers and cannot have interactive
shells. In order to do this you can either:

• disallow users from login to the ssh server (as described above either through the configuration file or
PAM configuration).

• give users a restricted shell such as scponly or rssh. These shells restrict the commands available to the
users so that they are not provided any remote execution priviledges.

Securing Squid
Squid is one of the most popular proxy/cache server, and there are some security issues that should
be taken into account. Squid's default configuration file denies all users requests. However the Debian
package allows access from 'localhost', you just need to configure your browser properly. You should
configure Squid to allow access to trusted users, hosts or networks defining an Access Control List on
/etc/squid/squid.conf, see the https://web.archive.org/web/20061206052115/http://www.deck-
le.co.za/squid-users-guide/Main_Page for more information about defining ACLs rules. Notice that De-
bian provides a minimum configuration for Squid that will prevent anything, except from localhost to
connect to your proxy server (which will run in the default port 3128). You will need to customize your
/etc/squid/squid.conf as needed.

The recommended minimum configuration (provided with the package) is shown below:

acl all src 0.0.0.0/0.0.0.0
acl manager proto cache_object
acl localhost src 127.0.0.1/255.255.255.255
acl SSL_ports port 443 563
acl Safe_ports port 80 # http
acl Safe_ports port 21 # ftp
acl Safe_ports port 443 563 # https, snews
acl Safe_ports port 70 # gopher
acl Safe_ports port 210 # wais
acl Safe_ports port 1025-65535 # unregistered ports

59

https://web.archive.org/web/20061206052115/http://www.deckle.co.za/squid-users-guide/Main_Page
https://web.archive.org/web/20061206052115/http://www.deckle.co.za/squid-users-guide/Main_Page

Securing services run-
ning on your system

acl Safe_ports port 280 # http-mgmt
acl Safe_ports port 488 # gss-http
acl Safe_ports port 591 # filemaker
acl Safe_ports port 777 # multiling http
acl Safe_ports port 901 # SWAT
acl purge method PURGE
acl CONNECT method CONNECT
(...)
Only allow cachemgr access from localhost
http_access allow manager localhost
http_access deny manager
Only allow purge requests from localhost
http_access allow purge localhost
http_access deny purge
Deny requests to unknown ports
http_access deny !Safe_ports
Deny CONNECT to other than SSL ports
http_access deny CONNECT !SSL_ports
#
INSERT YOUR OWN RULE(S) HERE TO ALLOW ACCESS FROM YOUR CLIENTS
#
http_access allow localhost
And finally deny all other access to this proxy
http_access deny all
#Default:
icp_access deny all
#
#Allow ICP queries from everyone
icp_access allow all

You should also configure Squid based on your system resources, including cache memory (option
cache_mem), location of the cached files and the amount of space they will take up on disk (option
cache_dir).

Notice that, if not properly configured, someone may relay a mail message through Squid, since the HTTP
and SMTP protocols are designed similarly. Squid's default configuration file denies access to port 25. If
you wish to allow connections to port 25 just add it to Safe_ports lists. However, this is NOT recommended.

Setting and configuring the proxy/cache server properly is only part of keeping your site secure. Another
necessary task is to analyze Squid's logs to assure that all things are working as they should be working.
There are some packages in Debian GNU/Linux that can help an administrator to do this. The following
packages are available in Debian 3.0 and Debian 3.1 (sarge):

• calamaris - Log analyzer for Squid or Oops proxy log files.

• modlogan - A modular logfile analyzer.

• sarg - Squid Analysis Report Generator.

• squidtaild - Squid log monitoring program.

When using Squid in Accelerator Mode it acts as a web server too. Turning on this option increas-
es code complexity, making it less reliable. By default Squid is not configured to act as a web serv-
er, so you don't need to worry about this. Note that if you want to use this feature be sure that it
is really necessary. To find more information about Accelerator Mode on Squid see the https://we-
b.archive.org/web/20070104164802/http://www.deckle.co.za/squid-users-guide/Accelerator_Mode

60

https://web.archive.org/web/20070104164802/http://www.deckle.co.za/squid-users-guide/Accelerator_Mode
https://web.archive.org/web/20070104164802/http://www.deckle.co.za/squid-users-guide/Accelerator_Mode

Securing services run-
ning on your system

Securing FTP
If you really have to use FTP (without wrapping it with sslwrap or inside a SSL or SSH tunnel), you should
chroot ftp into the ftp users' home directory, so that the user is unable to see anything else than their own
directory. Otherwise they could traverse your root file system just like if they had a shell in it. You can
add the following line in your proftpd.conf in your global section to enable this chroot feature:

DefaultRoot ~

Restart ProFTPd by /etc/init.d/proftpd restart and check whether you can escape from your
homedir now.

To prevent ProFTPd DoS attacks using ../../.., add the following line in /etc/proftpd.conf: Deny-
Filter *.*/

Always remember that FTP sends login and authentication passwords in clear text (this is not an issue if
you are providing an anonymous public service) and there are better alternatives in Debian for this. For
example, sftp (provided by ssh). There are also free implementations of SSH for other operating systems:
http://www.chiark.greenend.org.uk/~sgtatham/putty/ and http://www.cygwin.com for example.

However, if you still maintain the FTP server while making users access through SSH you might encounter
a typical problem. Users accessing anonymous FTP servers inside SSH-secured systems might try to log
in the FTP server. While the access will be refused, the password will nevertheless be sent through the
net in clear form. To avoid that, ProFTPd developer TJ Saunders has created a patch that prevents users
feeding the anonymous FTP server with valid SSH accounts. More information and patch available at:
http://www.castaglia.org/proftpd/#Patches. This patch has been reported to Debian too, see http://bugs.de-
bian.org/145669.

Securing access to the X Window System
Today, X terminals are used by more and more companies where one server is needed for a lot of work-
stations. This can be dangerous, because you need to allow the file server to connect to the clients (X
server from the X point of view. X switches the definition of client and server). If you follow the (very
bad) suggestion of many docs, you type xhost + on your machine. This allows any X client to connect
to your system. For slightly better security, you can use the command xhost +hostname instead to
only allow access from specific hosts.

A much more secure solution, though, is to use ssh to tunnel X and encrypt the whole session. This is done
automatically when you ssh to another machine. For this to work, you have to configure both the ssh client
and the ssh server. On the ssh client, ForwardX11 should be set to yes in /etc/ssh/ssh_config.
On the ssh server, X11Forwarding should be set to yes in /etc/ssh/sshd_config and the pack-
age xbase-clients should be installed because the ssh server uses /usr/X11R6/bin/xauth (/usr/
bin/xauth on Debian unstable) when setting up the pseudo X display. In times of SSH, you should
drop the xhost based access control completely.

For best security, if you do not need X access from other machines, switch off the binding on TCP port
6000 simply by typing:

$ startx -- -nolisten tcp

This is the default behavior in Xfree 4.1.0 (the Xserver provided in Debian 3.0 and 3.1). If you are running
Xfree 3.3.6 (i.e. you have Debian 2.2 installed) you can edit /etc/X11/xinit/xserverrc to have
it something along the lines of:

61

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.cygwin.com
http://www.castaglia.org/proftpd/#Patches
http://bugs.debian.org/145669
http://bugs.debian.org/145669

Securing services run-
ning on your system

#!/bin/sh
exec /usr/bin/X11/X -dpi 100 -nolisten tcp

If you are using XDM set /etc/X11/xdm/Xservers to: :0 local /usr/bin/X11/X vt7 -
dpi 100 -nolisten tcp. If you are using Gdm make sure that the DisallowTCP=true option
is set in the /etc/gdm/gdm.conf (which is the default in Debian). This will basically append -no-
listen tcp to every X command line 1.

You can also set the default's system timeout for xscreensaver locks. Even if the user can override it,
you should edit the /etc/X11/app-defaults/XScreenSaver configuration file and change the
lock line:

*lock: False

(which is the default in Debian) to:

*lock: True

FIXME: Add information on how to disable the screensavers which show the user desktop (which might
have sensitive information).

Read more on X Window security in http://www.tldp.org/HOWTO/XWindow-User-HOWTO.html (/
usr/share/doc/HOWTO/en-txt/XWindow-User-HOWTO.txt.gz).

FIXME: Add info on thread of debian-security on how to change config files of XFree 3.3.6 to do this.

Check your display manager
If you only want to have a display manager installed for local usage (having a nice graphical login, that
is), make sure the XDMCP (X Display Manager Control Protocol) stuff is disabled. In XDM you can do
this with this line in /etc/X11/xdm/xdm-config:

DisplayManager.requestPort: 0

For GDM there should be in your gdm.conf:

[xdmcp]
Enable=false

Normally, all display managers are configured not to start XDMCP services per default in Debian.

Securing printing access (the lpd and lprng is-
sue)

Imagine, you arrive at work, and the printer is spitting out endless amounts of paper because someone is
DoSing your line printer daemon. Nasty, isn't it?

1 Gdm will not append -nolisten tcp if it finds a -query or -indirect on the command line since the query wouldn't work.

62

http://www.tldp.org/HOWTO/XWindow-User-HOWTO.html

Securing services run-
ning on your system

In any UNIX printing architecture, there has to be a way to get the client's data to the host's print server.
In traditional lpr and lp, the client command copies or symlinks the data into the spool directory (which
is why these programs are usually SUID or SGID).

In order to avoid any issues you should keep your printer servers especially secure. This means you need
to configure your printer service so it will only allow connections from a set of trusted servers. In order to
do this, add the servers you want to allow printing to your /etc/hosts.lpd.

However, even if you do this, the lpr daemon accepts incoming connections on port 515 of any interface.
You should consider firewalling connections from networks/hosts which are not allowed printing (the lpr
daemon cannot be limited to listen only on a given IP address).

Lprng should be preferred over lpr since it can be configured to do IP access control. And you can specify
which interface to bind to (although somewhat weirdly).

If you are using a printer in your system, but only locally, you will not want to share this service over a net-
work. You can consider using other printing systems, like the one provided by cups or http://pdq.source-
forge.net/ which is based on user permissions of the /dev/lp0 device.

In cups, the print data is transferred to the server via the HTTP protocol. This means the client program
doesn't need any special privileges, but does require that the server is listening on a port somewhere.

However, if you want to use cups, but only locally, you can configure it to bind to the loopback interface
by changing /etc/cups/cupsd.conf:

Listen 127.0.0.1:631

There are many other security options like allowing or denying networks and hosts in this config file.
However, if you do not need them you might be better off just limiting the listening port. Cups also
serves documentation through the HTTP port, if you do not want to disclose potential useful information
to outside attackers (and the port is open) add also:

<Location />
 Order Deny,Allow
 Deny From All
 Allow From 127.0.0.1
</Location>

This configuration file can be modified to add some more features including SSL/TLS certificates and
crypto. The manuals are available at http://localhost:631/ or at http://cups.org.

FIXME: Add more content (the article on http://www.rootprompt.org provides some very interesting
views).

FIXME: Check if PDG is available in Debian, and if so, suggest this as the preferred printing system.

FIXME: Check if Farmer/Wietse has a replacement for printer daemon and if it's available in Debian.

Securing the mail service
If your server is not a mailing system, you do not really need to have a mail daemon listening for incoming
connections, but you might want local mail delivered in order, for example, to receive mail for the root
user from any alert systems you have in place.

63

http://pdq.sourceforge.net/
http://pdq.sourceforge.net/
http://cups.org
http://www.rootprompt.org

Securing services run-
ning on your system

If you have exim you do not need the daemon to be working in order to do this since the standard cron
job flushes the mail queue. See the section called “Disabling daemon services” on how to do this.

Configuring a Nullmailer
You might want to have a local mailer daemon so that it can relay the mails sent locally to another system.
This is common when you have to administer a number of systems and do not want to connect to each of
them to read the mail sent locally. Just as all logging of each individual system can be centralized by using
a central syslog server, mail can be sent to a central mailserver.

Such a relay-only system should be configured properly for this. The daemon could, as well, be configured
to only listen on the loopback address.

The following configuration steps only need to be taken to configure the exim package in the Debian 3.0
release. If you are using a later release (such as 3.1 which uses exim4) the installation system has been
improved so that if the mail transport agent is configured to only deliver local mail it will automatically
only allow connections from the local host and will not permit remote connections.

In a Debian 3.0 system using exim, you will have to remove the SMTP daemon from inetd:

$ update-inetd --disable smtp

and configure the mailer daemon to only listen on the loopback interface. In exim (the default MTA) you
can do this by editing the file /etc/exim.conf and adding the following line:

local_interfaces = "127.0.0.1"

Restart both daemons (inetd and exim) and you will have exim listening on the 127.0.0.1:25 socket only.
Be careful, and first disable inetd, otherwise, exim will not start since the inetd daemon is already handling
incoming connections.

For postfix edit /etc/postfix/main.conf:

inet_interfaces = localhost

If you only want local mail, this approach is better than tcp-wrapping the mailer daemon or adding fire-
walling rules to limit anybody accessing it. However, if you do need it to listen on other interfaces, you
might consider launching it from inetd and adding a tcp wrapper so incoming connections are checked
against /etc/hosts.allow and /etc/hosts.deny. Also, you will be aware of when an unautho-
rized access is attempted against your mailer daemon, if you set up proper logging for any of the methods
above.

In any case, to reject mail relay attempts at the SMTP level, you can change /etc/exim/exim.conf
to include:

receiver_verify = true

Even if your mail server will not relay the message, this kind of configuration is needed for the relay tester
at http://www.abuse.net/relay.html to determine that your server is not relay capable.

If you want a relay-only setup, however, you can consider changing the mailer daemon to programs that
can only be configured to forward the mail to a remote mail server. Debian provides currently both ssmtp

64

http://www.abuse.net/relay.html

Securing services run-
ning on your system

and nullmailer for this purpose. In any case, you can evaluate for yourself any of the mail transport agents
2 provided by Debian and see which one suits best to the system's purposes.

Providing secure access to mailboxes
If you want to give remote access to mailboxes there are a number of POP3 and IMAP daemons available.3

However, if you provide IMAP access note that it is a general file access protocol, it can become the
equivalent of a shell access because users might be able to retrieve any file that they can through it.

Try, for example, to configure as your inbox path {server.com}/etc/passwd if it succeeds your
IMAP daemon is not properly configured to prevent this kind of access.

Of the IMAP servers in Debian the cyrus server (in the cyrus-imapd package) gets around this by having
all access to a database in a restricted part of the file system. Also, uw-imapd (either install the uw-
imapd or better, if your IMAP clients support it, uw-imapd-ssl) can be configured to chroot the users mail
directory but this is not enabled by default. The documentation provided gives more information on how
to configure it.

Also, you might want to run an IMAP server that does not need valid users to be created on the local system
(which would grant shell access too), courier-imap (for IMAP) and courier-pop, teapop (for POP3) and
cyrus-imapd (for both POP3 and IMAP) provide servers with authentication methods beside the local user
accounts. cyrus can use any authentication method that can be configured through PAM while teapop
might use databases (such as postgresql and mysql) for user authentication.

FIXME: Check: uw-imapd might be configured with user authentication through PAM too.

Receiving mail securely
Reading/receiving mail is the most common clear-text protocol. If you use either POP3 or IMAP to get
your mail, you send your clear-text password across the net, so almost anyone can read your mail from
now on. Instead, use SSL (Secure Sockets Layer) to receive your mail. The other alternative is SSH, if you
have a shell account on the box which acts as your POP or IMAP server. Here is a basic fetchmailrc
to demonstrate this:

poll my-imap-mailserver.org via "localhost"
 with proto IMAP port 1236
 user "ref" there with password "hackme" is alex here warnings 3600
 folders
 .Mail/debian
 preconnect 'ssh -f -P -C -L 1236:my-imap-mailserver.org:143 -l ref
 my-imap-mailserver.org sleep 15 </dev/null > /dev/null'

The preconnect is the important line. It fires up an ssh session and creates the necessary tunnel, which
automatically forwards connections to localhost port 1236 to the IMAP mail server, but encrypted. Another
possibility would be to use fetchmail with the SSL feature.

2 To retrieve the list of mailer daemons available in Debian try:

$ apt-cache search mail-transport-agent

The list will not include qmail, which is distributed only as source code in the qmail-src package.
3 A list of servers/daemons which support these protocols in Debian can be retrieved with:

$ apt-cache search pop3-server
$ apt-cache search imap-server

65

Securing services run-
ning on your system

If you want to provide encrypted mail services like POP and IMAP, apt-get install stunnel
and start your daemons this way:

stunnel -p /etc/ssl/certs/stunnel.pem -d pop3s -l /usr/sbin/popd

This command wraps the provided daemon (-l) to the port (-d) and uses the specified SSL certificate (-p).

Securing BIND
There are different issues that can be tackled in order to secure the Domain server daemon, which are
similar to the ones considered when securing any given service:

• configuring the daemon itself properly so it cannot be misused from the outside (see the section called
“Bind configuration to avoid misuse”). This includes limiting possible queries from clients: zone trans-
fers and recursive queries.

• limit the access of the daemon to the server itself so if it is used to break in, the damage to the system
is limited. This includes running the daemon as a non-privileged user (see the section called “Changing
BIND's user”) and chrooting it (see the section called “Chrooting the name server”).

Bind configuration to avoid misuse
You should restrict some of the information that is served from the DNS server to outside clients so that it
cannot be used to retrieve valuable information from your organization that you do not want to give away.
This includes adding the following options: allow-transfer, allow-query, allow-recursion and version. You
can either limit this on the global section (so it applies to all the zones served) or on a per-zone basis. This
information is documented in the bind-doc package, read more on this on /usr/share/doc/bind/
html/index.html once the package is installed.

Imagine that your server is connected to the Internet and to your internal (your internal IP is 192.168.1.2)
network (a basic multi-homed server), you do not want to give any service to the Internet and you just
want to enable DNS lookups from your internal hosts. You could restrict it by including in /etc/bind/
named.conf:

options {
 allow-query { 192.168.1/24; } ;
 allow-transfer { none; } ;
 allow-recursion { 192.168.1/24; } ;
 listen-on { 192.168.1.2; } ;
 forward { only; } ;
 forwarders { A.B.C.D; } ;
};

The listen-on option makes the DNS bind to only the interface that has the internal address, but, even if
this interface is the same as the interface that connects to the Internet (if you are using NAT, for example),
queries will only be accepted if coming from your internal hosts. If the system has multiple interfaces
and the listen-on is not present, only internal users could query, but, since the port would be accessible to
outside attackers, they could try to crash (or exploit buffer overflow attacks) on the DNS server. You could
even make it listen only on 127.0.0.1 if you are not giving DNS service for any other systems than yourself.

The version.bind record in the chaos class contains the version of the currently running bind process. This
information is often used by automated scanners and malicious individuals who wish to determine if one's

66

Securing services run-
ning on your system

bind is vulnerable to a specific attack. By providing false or no information in the version.bind record,
one limits the probability that one's server will be attacked based on its published version. To provide your
own version, use the version directive in the following manner:

 options { ... various options here ...
version "Not available."; };

Changing the version.bind record does not provide actual protection against attacks, but it might be con-
sidered a useful safeguard.

A sample named.conf configuration file might be the following:

acl internal {
 127.0.0.1/32; // localhost
 10.0.0.0/8; // internal
 aa.bb.cc.dd; // eth0 IP
};

acl friendly {
 ee.ff.gg.hh; // slave DNS
 aa.bb.cc.dd; // eth0 IP
 127.0.0.1/32; // localhost
 10.0.0.0/8; // internal
};

options {
 directory "/var/cache/bind";
 allow-query { internal; };
 allow-recursion { internal; };
 allow-transfer { none; };
};
// From here to the mysite.bogus zone
// is basically unmodified from the debian default
logging {
 category lame-servers { null; };
 category cname { null; };
};

zone "." {
 type hint;
 file "/etc/bind/db.root";
};

zone "localhost" {
 type master;
 file "/etc/bind/db.local";
};

zone "127.in-addr.arpa" {
 type master;
 file "/etc/bind/db.127";
};

zone "0.in-addr.arpa" {

67

Securing services run-
ning on your system

 type master;
 file "/etc/bind/db.0";
};

zone "255.in-addr.arpa" {
 type master;
 file "/etc/bind/db.255";
};

// zones I added myself
zone "mysite.bogus" {
 type master;
 file "/etc/bind/named.mysite";
 allow-query { any; };
 allow-transfer { friendly; };
};

Please (again) check the Bug Tracking System regarding Bind, specifically http://bugs.debian.org/94760.
Feel free to contribute to the bug report if you think you can add useful information.

Changing BIND's user
Regarding limiting BIND's privileges you must be aware that if a non-root user runs BIND, then BIND can-
not detect new interfaces automatically, for example when you put a PCMCIA card into your laptop. Check
the README.Debian file in your named documentation (/usr/share/doc/bind/README.De-
bian) directory for more information about this issue. There have been many recent security problems
concerning BIND, so switching the user is useful when possible. We will detail here the steps needed in
order to do this, however, if you want to do this in an automatic way you might try the script provided in
the section called “Sample script to change the default Bind installation.”.

Notice, in any case, that this only applies to BIND version 8. In the Debian packages for BIND version 9
(since the 9.2.1-5 version, available since sarge) the bind user is created and used by setting the OPTIONS
variable in /etc/default/bind9. If you are using BIND version 9 and your name server daemon is
not running as the bind user verify the settings on that file.

To run BIND under a different user, first create a separate user and group for it (it is not a good idea to
use nobody or nogroup for every service not running as root). In this example, the user and group named
will be used. You can do this by entering:

addgroup named
adduser --system --home /home/named --no-create-home --ingroup named \
 --disabled-password --disabled-login named

Notice that the user named will be quite restricted. If you want, for whatever reason, to have a less re-
strictive setup use:

adduser --system --ingroup named named

Now you can either edit /etc/init.d/bind with your favorite editor and change the line beginning
with

start-stop-daemon --start

68

http://bugs.debian.org/94760

Securing services run-
ning on your system

to4

start-stop-daemon --start --quiet --exec /usr/sbin/named -- -g named -u named

Or you can change (create it if it does not exit) the default configuration file (/etc/default/bind
for BIND version 8) and introduce the following:

OPTIONS="-u named -g named"

Change the permissions of files that are used by Bind, including /etc/bind/rndc.key:

-rw-r----- 1 root named 77 Jan 4 01:02 rndc.key

and where bind creates its pidfile, using, for example, /var/run/named instead of /var/run:

$ mkdir /var/run/named
$ chown named.named /var/run/named
$ vi /etc/named.conf
[... update the configuration file to use this new location ...]
options { ...
 pid-file "/var/run/named/named.pid";
};
[...]

Also, in order to avoid running anything as root, change the reload line in the init.d script by substituting:

reload)
 /usr/sbin/ndc reload

to:

reload)
 $0 stop
 sleep 1
 $0 start

Note: Depending on your Debian version you might have to change the restart line too. This was fixed
in Debian's bind version 1:8.3.1-2.

All you need to do now is to restart bind via /etc/init.d/bind restart, and then check your
syslog for two entries like this:

Sep 4 15:11:08 nexus named[13439]: group = named
Sep 4 15:11:08 nexus named[13439]: user = named

Voilà! Your named now does not run as root. If you want to read more information on why BIND does not
run as non-root user on Debian systems, please check the Bug Tracking System regarding Bind, specifical-
ly http://bugs.debian.org/50013 and http://bugs.debian.org/132582, http://bugs.debian.org/53550, http://

4 Note that depending on your bind version you might not have the -g option, most notably if you are using bind9 in sarge (9.2.4 version).

69

http://bugs.debian.org/50013
http://bugs.debian.org/132582
http://bugs.debian.org/53550
http://bugs.debian.org/52745

Securing services run-
ning on your system

bugs.debian.org/52745, and http://bugs.debian.org/128129. Feel free to contribute to the bug reports if you
think you can add useful information.

Chrooting the name server
To achieve maximum BIND security, now build a chroot jail (see the section called “General chroot and
suid paranoia”) around your daemon. There is an easy way to do this: the -t option (see the named(8)
manual page or page 100 of http://www.nominum.com/content/documents/bind9arm.pdf). This will make
Bind chroot itself into the given directory without you needing to set up a chroot jail and worry about
dynamic libraries. The only files that need to be in the chroot jail are:

dev/null
etc/bind/ - should hold named.conf and all the server zones
sbin/named-xfer - if you do name transfers
var/run/named/ - should hold the PID and the name server cache (if
 any) this directory needs to be writable by named user
var/log/named - if you set up logging to a file, needs to be writable
 for the named user
dev/log - syslogd should be listening here if named is configured to
 log through it

In order for your Bind daemon to work properly it needs permission in the named files. This is an easy task
since the configuration files are always at /etc/named/. Take into account that it only needs read-only
access to the zone files, unless it is a secondary or cache name server. If this is your case you will have to
give read-write permissions to the necessary zones (so that zone transfers from the primary server work).

Also, you can find more information regarding Bind chrooting in the http://www.tldp.org/HOWTO/Ch-
root-BIND-HOWTO.html (regarding Bind 9) and http://www.tldp.org/HOWTO/Chroot-BIND8-HOW-
TO.html (regarding Bind 8). This same documents should be available through the installation of the
doc-linux-text (text version) or doc-linux-html (HTML version). Another useful document is http://we-
b.archive.org/web/20011024064030/http://www.psionic.com/papers/dns/dns-linux.

If you are setting up a full chroot jail (i.e. not just -t) for Bind in Debian, make sure you have the following
files in it5:

dev/log - syslogd should be listening here
dev/null
etc/bind/named.conf
etc/localtime
etc/group - with only a single line: "named:x:GID:"
etc/ld.so.cache - generated with ldconfig
lib/ld-2.3.6.so
lib/libc-2.3.6.so
lib/ld-linux.so.2 - symlinked to ld-2.3.6.so
lib/libc.so.6 - symlinked to libc-2.3.6.so
sbin/ldconfig - may be deleted after setting up the chroot
sbin/named-xfer - if you do name transfers
var/run/

And modify also syslogd listen on $CHROOT/dev/log so the named server can write syslog entries
into the local system log.

5 This setup has not been tested for new release of Bind yet.

70

http://bugs.debian.org/52745
http://bugs.debian.org/128129
http://www.nominum.com/content/documents/bind9arm.pdf
http://www.tldp.org/HOWTO/Chroot-BIND-HOWTO.html
http://www.tldp.org/HOWTO/Chroot-BIND-HOWTO.html
http://www.tldp.org/HOWTO/Chroot-BIND8-HOWTO.html
http://www.tldp.org/HOWTO/Chroot-BIND8-HOWTO.html
http://web.archive.org/web/20011024064030/http://www.psionic.com/papers/dns/dns-linux
http://web.archive.org/web/20011024064030/http://www.psionic.com/papers/dns/dns-linux

Securing services run-
ning on your system

If you want to avoid problems with dynamic libraries, you can compile bind statically. You can use apt-
get for this, with the source option. It can even download the packages you need to properly compile
it. You would need to do something similar to:

$ apt-get source bind
apt-get build-dep bind
$ cd bind-8.2.5-2
 (edit src/port/linux/Makefile so CFLAGS includes the '-static'
 option)
$ dpkg-buildpackage -rfakeroot -uc -us
$ cd ..
dpkg -i bind-8.2.5-2*deb

After installation, you will need to move around the files to the chroot jail6 you can keep the init.d
scripts in /etc/init.d so that the system will automatically start the name server, but edit them to add
--chroot /location_of_chroot in the calls to start-stop-daemon in those scripts or use the -t
option for BIND by setting it in the OPTIONS argument at the /etc/default/bind (for version 8)
or /etc/default/bind9 (for version 9) configuration file.

For more information on how to set up chroots see the section called “General chroot and suid paranoia”.

FIXME: Merge info from http://people.debian.org/~pzn/howto/chroot-bind.sh.txt, http://www.cryp-
tio.net/~ferlatte/config/ (Debian-specific), http://web.archive.org/web/20021216104548/http://www.p-
sionic.com/papers/whitep01.html and http://csrc.nist.gov/fasp/FASPDocs/NISTSecuringDNS.htm.

Securing Apache
FIXME: Add content: modules provided with the normal Apache installation (under /usr/lib/apache/X.X/
mod_*) and modules that can be installed separately in libapache-mod-XXX packages.

You can limit access to the Apache server if you only want to use it internally (for testing purposes, to
access the doc-central archive, etc.) and do not want outsiders to access it. To do this use the Listen or
BindAddress directives in /etc/apache/http.conf.

Using Listen:

Listen 127.0.0.1:80

Using BindAddress:

BindAddress 127.0.0.1

Then restart apache with /etc/init.d/apache restart and you will see that it is only listening
on the loopback interface.

In any case, if you are not using all the functionality provided by Apache, you might want to take a look
at other web servers provided in Debian like dhttpd.

The http://httpd.apache.org/docs/misc/security_tips.html provides information regarding security mea-
sures to be taken on Apache web server (this same information is provided in Debian by the apache-doc
package).

6 Unless you use the instdir option when calling dpkg but then the chroot jail might be a little more complex.

71

http://people.debian.org/~pzn/howto/chroot-bind.sh.txt
http://www.cryptio.net/~ferlatte/config/
http://www.cryptio.net/~ferlatte/config/
http://web.archive.org/web/20021216104548/http://www.psionic.com/papers/whitep01.html
http://web.archive.org/web/20021216104548/http://www.psionic.com/papers/whitep01.html
http://csrc.nist.gov/fasp/FASPDocs/NISTSecuringDNS.htm
http://httpd.apache.org/docs/misc/security_tips.html

Securing services run-
ning on your system

More information on further restricting Apache by setting up a chroot jail is provided in the section called
“Chroot environment for Apache”.

Disabling users from publishing web contents
The default Apache installation in Debian permits users to publish content under the $HOME/pub-
lic_html. This content can be retrieved remotely using an URL such as: http://your_apache_serv-
er/~user.

If you do not want to permit this you must change the /etc/apache/http.conf configuration file
commenting out (in Apache 1.3) the following module:

LoadModule userdir_module /usr/lib/apache/1.3/mod_userdir.so

If you are using Apache 2.0 you must remove the file /etc/apache2/mods-en-
abled/userdir.load or restrict the default configuration by modifying /etc/apache2/mods-
enabled/userdir.conf.

However, if the module was linked statically (you can list the modules that are compiled in running
apache -l) you must add the following to the Apache configuration file:

Userdir disabled

An attacker might still do user enumeration, since the answer of the web server will be a 403 Permission
Denied and not a 404 Not available. You can avoid this if you use the Rewrite module.

Logfiles permissions
Apache logfiles, since 1.3.22-1, are owned by user 'root' and group 'adm' with permissions 640. These
permissions are changed after rotation. An intruder that accessed the system through the web server would
not be able (without privilege escalation) to remove old log file entries.

Published web files
Apache files are located under /var/www. Just after installation the default file provides some information
on the system (mainly that it's a Debian system running Apache). The default webpages are owned by
user root and group root by default, while the Apache process runs as user www-data and group www-
data. This should make attackers that compromise the system through the web server harder to deface the
site. You should, of course, substitute the default web pages (which might provide information you do not
want to show to outsiders) with your own.

Securing finger
If you want to run the finger service first ask yourself if you need to do so. If you do, you will find out that
Debian provides many finger daemons (output from apt-cache search fingerd):

• cfingerd - Configurable finger daemon

• efingerd - Another finger daemon for unix, capable of fine-tuning your output.

• ffingerd - a secure finger daemon

72

Securing services run-
ning on your system

• fingerd - Remote user information server.

• xfingerd - BSD-like finger daemon with qmail support.

ffingerd is the recommended finger daemon if you are going to use it for a public service. In any case, you
are encouraged to, when setting it up through inetd, xinetd or tcpserver to: limit the number of processes
that will be running at the same time, limit access to the finger daemon from a given number of hosts
(using tcp wrappers) and having it only listening to the interface you need it to be in.

General chroot and suid paranoia
chroot is one of the most powerful possibilities to restrict a daemon or a user or another service. Just
imagine a jail around your target, which the target cannot escape from (normally, but there are still a
lot of conditions that allow one to escape out of such a jail). You can eventually create a modified root
environment for the user or service you do not trust. This can use quite a bit of disk space as you need to
copy all needed executables, as well as libraries, into the jail. But then, even if the user does something
malicious, the scope of the damage is limited to the jail.

Many services running as daemons could benefit from this sort of arrangement. The daemons that you
install with your Debian distribution will not come, however, chrooted7 per default.

This includes: name servers (such as bind), web servers (such as apache), mail servers (such as sendmail)
and ftp servers (such as wu-ftpd). It is probably fair to say that the complexity of BIND is the reason why
it has been exposed to a lot of attacks in recent years (see the section called “Securing BIND”).

However, Debian does provide some software that can help set up chroot environments. See the section
called “Making chrooted environments automatically”.

Anyway, if you run any service on your system, you should consider running them as secure as possible.
This includes: revoking root privileges, running in a restricted environment (such as a chroot jail) or re-
placing them with a more secure equivalent.

However, be forewarned that a chroot jail can be broken if the user running in it is the superuser. So,
you need to make the service run as a non-privileged user. By limiting its environment you are limiting
the world readable/executable files the service can access, thus, you limit the possibilities of a privilege
escalation by use of local system security vulnerabilities. Even in this situation you cannot be completely
sure that there is no way for a clever attacker to somehow break out of the jail. Using only server programs
which have a reputation for being secure is a good additional safety measure. Even minuscule holes like
open file handles can be used by a skilled attacker for breaking into the system. After all, chroot was not
designed as a security tool but as a testing tool.

Making chrooted environments automatically
There are several programs to chroot automatically servers and services. Debian currently (accepted in
May 2002) provides Wietse Venema's chrootuid in the chrootuid package, as well as compartment and
makejail. These programs can be used to set up a restricted environment for executing any program (ch-
rootuid enables you to even run it as a restricted user).

Some of these tools can be used to set up the chroot environment easily. The makejail program for ex-
ample, can create and update a chroot jail with short configuration files (it provides sample configuration
files for bind, apache, postgresql and mysql). It attempts to guess and install into the jail all files re-
quired by the daemon using strace, stat and Debian's package dependencies. More information at http://

7 It does try to run them under minimum priviledge which includes running daemons with their own users instead of having them run as root.

73

http://www.floc.net/makejail/

Securing services run-
ning on your system

www.floc.net/makejail/. Jailer is a similar tool which can be retrieved from http://www.balabit.hu/down-
loads/jailer/ and is also available as a Debian package.

General cleartext password paranoia
You should try to avoid any network service which sends and receives passwords in cleartext over a net
like FTP/Telnet/NIS/RPC. The author recommends the use of ssh instead of telnet and ftp to everybody.

Keep in mind that migrating from telnet to ssh, but using other cleartext protocols does not increase your
security in ANY way! Best would be to remove ftp, telnet, pop, imap, http and to supersede them with
their respective encrypted services. You should consider moving from these services to their SSL versions,
ftp-ssl, telnet-ssl, pop-ssl, https ...

Most of these above listed hints apply to every Unix system (you will find them if reading any other
hardening-related document related to Linux and other Unices).

Disabling NIS
You should not use NIS, the Network Information Service, if possible, because it allows password sharing.
This can be highly insecure if your setup is broken.

If you need password sharing between machines, you might want to consider using other alternatives. For
example, you can setup an LDAP server and configure PAM on your system in order to contact the LDAP
server for user authentication. You can find a detailed setup in the http://www.tldp.org/HOWTO/LDAP-
HOWTO.html (/usr/share/doc/HOWTO/en-txt/LDAP-HOWTO.txt.gz).

You can read more about NIS security in the http://www.tldp.org/HOWTO/NIS-HOWTO.html (/usr/
share/doc/HOWTO/en-txt/NIS-HOWTO.txt.gz).

FIXME (jfs): Add info on how to set this up in Debian.

Securing RPC services
You should disable RPC if you do not need it.

Remote Procedure Call (RPC) is a protocol that programs can use to request services from other programs
located on different computers. The portmap service controls RPC services by mapping RPC program
numbers into DARPA protocol port numbers; it must be running in order to make RPC calls.

RPC-based services have had a bad record of security holes, although the portmapper itself hasn't (but still
provides information to a remote attacker). Notice that some of the DDoS (distributed denial of service)
attacks use RPC exploits to get into the system and act as a so called agent/handler.

You only need RPC if you are using an RPC-based service. The most common RPC-based services are
NFS (Network File System) and NIS (Network Information System). See the previous section for more
information about NIS. The File Alteration Monitor (FAM) provided by the package fam is also an RPC
service, and thus depends on portmap.

NFS services are quite important in some networks. If that is the case for you, then you will need
to find a balance of security and usability for your network (you can read more about NFS secu-
rity in the http://www.tldp.org/HOWTO/NFS-HOWTO.html (/usr/share/doc/HOWTO/en-txt/
NFS-HOWTO.txt.gz)).

74

http://www.floc.net/makejail/
http://www.balabit.hu/downloads/jailer/
http://www.balabit.hu/downloads/jailer/
http://www.tldp.org/HOWTO/LDAP-HOWTO.html
http://www.tldp.org/HOWTO/LDAP-HOWTO.html
http://www.tldp.org/HOWTO/NIS-HOWTO.html
http://www.tldp.org/HOWTO/NFS-HOWTO.html

Securing services run-
ning on your system

Disabling RPC services completely
Disabling portmap is quite simple. There are several different methods. The simplest one in a Debian 3.0
system and later releases is to uninstall the portmap package. If you are running an older Debian version
you will have to disable the service as seen in the section called “Disabling daemon services”, because the
program is part of the netbase package (which cannot be de-installed without breaking the system).

Notice that some desktop environments (notably, GNOME) use RPC services and need the portmapper
for some of the file management features. If this is your case, you can limit the access to RPC services
as described below.

Limiting access to RPC services
Unfortunately, in some cases removing RPC services from the system is not an option. Some local desktop
services (notably SGI's fam) are RPC based and thus need a local portmapper. This means that under some
situations, users installing a desktop environment (like GNOME) will install the portmapper too.

There are several ways to limit access to the portmapper and to RPC services:

• Block access to the ports used by these services with a local firewall (see the section called “Adding
firewall capabilities”).

• Block access to these services using tcp wrappers, since the portmapper (and some RPC services) are
compiled with libwrap (see the section called “Using tcpwrappers”). This means that you can block
access to them through the hosts.allow and hosts.deny tcp wrappers configuration.

• Since version 5-5, the portmap package can be configured to listen only on the loopback interface.
To do this, modify /etc/default/portmap, uncomment the following line: #OPTIONS="-i
127.0.0.1" and restart the portmapper. This is sufficient to allow local RPC services to work while at
the same time prevents remote systems from accessing them (see, however, the section called “Disabling
weak-end hosts issues”).

Adding firewall capabilities
The Debian GNU/Linux operating system has the built-in capabilities provided by the Linux kernel. If you
install a recent Debian release (default kernel installed is 2.6) you will have iptables (netfilter) firewalling
available8.

Firewalling the local system
You can use firewall rules as a way to secure the access to your local system and, even, to limit the outbound
communications made by it. Firewall rules can also be used to protect processes that cannot be properly
configured not to provide services to some networks, IP addresses, etc.

However, this step is presented last in this manual basically because it is much better not to depend solely
on firewalling capabilities in order to protect a given system. Security in a system is made up of layers,
firewalling should be the last to include, once all services have been hardened. You can easily imagine a
setup in which the system is solely protected by a built-in firewall and an administrator blissfully removes

8 Available since the kernel version 2.4 (which was the default kernel in Debian 3.0). Previous kernel versions (2.2, available in even older Debian
releases) used ipchains. The main difference between ipchains and iptables is that the latter is based on stateful packet inspection which provides
for more secure (and easier to build) filtering configurations. Older (and now unsupported) Debian distributions using the 2.0 kernel series needed
the appropriate kernel patch.

75

Securing services run-
ning on your system

the firewall rules for whatever reason (problems with the setup, annoyance, human error...), this system
would be wide open to an attack if there were no other hardening in the system to protect from it.

On the other hand, having firewall rules on the local system also prevents some bad things from happening.
Even if the services provided are configured securely, a firewall can protect from misconfigurations or
from fresh installed services that have not yet been properly configured. Also, a tight configuration will
prevent trojans calling home from working unless the firewalling code is removed. Note that an intruder
does not need superuser access to install a trojan locally that could be remotely controlled (since binding
on ports is allowed if they are not priviledged ports and capabilities have not been removed).

Thus, a proper firewall setup would be one with a default deny policy, that is:

• incoming connections are allowed only to local services by allowed machines.

• outgoing connections are only allowed to services used by your system (DNS, web browsing, POP,
email...).9

• the forward rule denies everything (unless you are protecting other systems, see below).

• all other incoming or outgoing connections are denied.

Using a firewall to protect other systems
A Debian firewall can also be installed in order to protect, with filtering rules, access to systems behind it,
limiting their exposure to the Internet. A firewall can be configured to prevent access from systems outside
of the local network to internal services (ports) that are not public. For example, on a mail server, only
port 25 (where the mail service is being given) needs to be accessible from the outside. A firewall can be
configured to, even if there are other network services besides the public ones running in the mail server,
throw away packets (this is known as filtering) directed towards them.

You can even set up a Debian GNU/Linux box as a bridge firewall, i.e. a filtering firewall completely
transparent to the network that lacks an IP address and thus cannot be attacked directly. Depending on
the kernel you have installed, you might need to install the bridge firewall patch and then go to 802.1d
Ethernet Bridging when configuring the kernel and a new option netfilter (firewalling) support. See the
the section called “Setting up a bridge firewall ” for more information on how to set this up in a Debian
GNU/Linux system.

Setting up a firewall
The default Debian installation, unlike other Linux distributions, does not yet provide a way for the ad-
ministrator to setup a firewall configuration throughout the default installation but you can install a number
of firewall configuration packages (see the section called “Using firewall packages”).

Of course, the configuration of the firewall is always system and network dependant. An administrator
must know beforehand what is the network layout and the systems to protect, the services that need to be
accessed, and whether or not other network considerations (like NAT or routing) need to be taken into
account. Be careful when configuring your firewall, as Laurence J. Lane says in the iptables package:

The tools can easily be misused, causing enormous amounts of grief by completely crippling network
access to a system. It is not terribly uncommon for a remote system administrator to accidentally get locked
out of a system hundreds or thousands of miles away. You can even manage to get locked out of a computer
who's keyboard is under your own fingers. Please, use due caution.

9 Unlike personal firewalls in other operating systems, Debian GNU/Linux does not (yet) provide firewall generation interfaces that can make rules
limiting them per process or user. However, the iptables code can be configured to do this (see the owner module in the iptables(8) manual page).

76

Securing services run-
ning on your system

Remember this: just installing the iptables (or the older firewalling code) does not give you any protection,
just provides the software. In order to have a firewall you need to configure it!

If you do not have a clue on how to set up your firewall rules manually consult the Packet Filtering HOWTO
and NAT HOWTO provided by iptables for offline reading at /usr/share/doc/iptables/html/.

If you do not know much about firewalling you should start by reading the http://www.tldp.org/HOW-
TO/Firewall-HOWTO.html, install the doc-linux-text package if you want to read it offline. If you want
to ask questions or need help setting up a firewall you can use the debian-firewall mailing list, see http://
lists.debian.org/debian-firewall. Also see the section called “Prior knowledge” for more (general) pointers
on firewalls. Another good iptables tutorial is http://iptables-tutorial.frozentux.net/iptables-tutorial.html.

Using firewall packages

Setting up manually a firewall can be complicated for novice (and sometimes even expert) administrators.
However, the free software community has created a number of tools that can be used to easily configure
a local firewall. Be forewarned that some of these tools are oriented more towards local-only protection
(also known as personal firewall) and some are more versatile and can be used to configure complex rules
to protect whole networks.

Some software that can be used to set up firewall rules in a Debian system is:

• For desktop systems:

• firestarter, a GNOME application oriented towards end-users that includes a wizard useful to quickly
setup firewall rules. The application includes a GUI to be able to monitor when a firewall rule blocks
traffic.

• guarddog, a KDE based firewall configuration package oriented both to novice and advanced users.

• knetfilter, a KDE GUI to manage firewall and NAT rules for iptables (alternative/competitor to the
guarddog tool although slightly oriented towards advanced users).

• fireflier, an interactive tool to create iptables rules based on traffic seen on the system and applications.
It has a server-client model so you have to install both the server (fireflier-server) and one of the
available clients, with one client available for different desktop environments: fireflier-client-gtk (Gtk
+ client), fireflier-client-kde (KDE client) and fireflier-client-qt (QT client).

• For servers (headless) systems:

• fwbuilder, an object oriented GUI which includes policy compilers for various firewall platforms
including Linux' netfilter, BSD's pf (used in OpenBSD, NetBSD, FreeBSD and MacOS X) as well as
router's access-lists. It is similar to enterprise firewall management software. Complete fwbuilder's
functionality is also available from the command line.

• shorewall, a firewall configuration tool which provides support for IPsec as well as limited support for
traffic shaping as well as the definition of the firewall rules. Configuration is done through a simple
set of files that are used to generate the iptables rules.

• bastille, this hardening application is described in Chapter 6, Automatic hardening of Debian systems.
One of the hardening steps that the administrator can configure is a definition of the allowed and
disallowed network traffic that is used to generate a set of firewall rules that the system will execute
on startup.

Lots of other iptables frontends come with Debian; an extensive list comparing the different packages in
Debian is maintained at the http://wiki.debian.org/Firewalls.

77

http://www.tldp.org/HOWTO/Firewall-HOWTO.html
http://www.tldp.org/HOWTO/Firewall-HOWTO.html
http://lists.debian.org/debian-firewall
http://lists.debian.org/debian-firewall
http://iptables-tutorial.frozentux.net/iptables-tutorial.html
http://wiki.debian.org/Firewalls

Securing services run-
ning on your system

Notice that some of the packages outlined previously will introduce firewalling scripts to be run when the
system boots. Test them extensively before rebooting or you might find yourself locked from the box. If
you mix different firewalling packages you can have undesired effects, usually, the firewalling script that
runs last will be the one that configures the system (which might not be what you intend). Consult the
package documentation and use either one of these setups.

As mentioned before, some programs, like firestarter, guarddog and knetfilter, are administration GUIs
using either GNOME or KDE (last two). These applications are much more user-oriented (i.e. for home
users) than some of the other packages in the list which might be more administrator-oriented. Some of
the programs mentioned before (like bastille) are focused at setting up firewall rules to protect the host
they run in but are not necessarily designed to setup firewall rules for firewall hosts that protect a network
(like shorewall or fwbuilder).

There is yet another type of firewall application: application proxies. If you are looking into setting up
an enterprise-level firewall that does packet filtering and provides a number of transparent proxies that
can do fine-grain traffic analysis you should consider using zorp, which provides this in a single program.
You can also manually setup this type of firewall host using the proxies available in Debian for different
services like for DNS using bind (properly configured), dnsmasq, pdnsd or totd for FTP using frox or ftp-
proxy, for X11 using xfwp, for IMAP using imapproxy, for mail using smtpd, or for POP3 using p3scan.
For other protocols you can either use a generic TCP proxy like simpleproxy or a generic SOCKS proxy
like dante-server, tsocks or socks4-server. Typically, you will also use a web caching system (like squid)
and a web filtering system (like squidguard or dansguardian).

Manual init.d configuration

Another possibility is to manually configure your firewall rules through an init.d script that will run all
the iptables commands. Take the following steps:

• Review the script below and adapt it to your needs.

• Test the script and review the syslog messages to see which traffic is being dropped. If you are testing
from the network you will want to either run the sample shell snippet to remove the firewall (if you don't
type anything in 20 seconds) or you might want to comment out the default deny policy definitions (-P
INPUT DROP and -P OUTPUT DROP) and check that the system will not drop any legitimate traffic.

• Move the script to /etc/init.d/myfirewall

• The below script takes advantage of Debian's use (since Squeeze) of dependency based boot sequencing.
For more information see: https://wiki.debian.org/LSBInitScripts/DependencyBasedBoot and https://
wiki.debian.org/LSBInitScripts. With the LSB headers set as they are in the script, insserv will automat-
ically configure the system to start the firewall before any network is brought up, and stop the firewall
after any network is brought down.

insserv myfirewall

This is the sample firewall script:

#!/bin/sh
BEGIN INIT INFO
Provides: myfirewall
Required-Start: $local_fs
Required-Stop: $local_fs
Default-Start: S

78

https://wiki.debian.org/LSBInitScripts/DependencyBasedBoot
https://wiki.debian.org/LSBInitScripts
https://wiki.debian.org/LSBInitScripts

Securing services run-
ning on your system

Default-Stop: 0 6
X-Start-Before: $network
X-Stop-After: $network
Short-Description: My custom firewall.
END INIT INFO
#
Simple example firewall configuration.
#
Caveats:
- This configuration applies to all network interfaces
if you want to restrict this to only a given interface use
'-i INTERFACE' in the iptables calls.
- Remote access for TCP/UDP services is granted to any host,
you probably will want to restrict this using '--source'.
#
chkconfig: 2345 9 91
description: Activates/Deactivates the firewall at boot time
#
You can test this script before applying with the following shell
snippet, if you do not type anything in 10 seconds the firewall
rules will be cleared.
#---
while true; do test=""; read -t 20 -p "OK? " test ; \
[-z "$test"] && /etc/init.d/myfirewall clear ; done
#---

PATH=/bin:/sbin:/usr/bin:/usr/sbin

Services that the system will offer to the network
TCP_SERVICES="22" # SSH only
UDP_SERVICES=""
Services the system will use from the network
REMOTE_TCP_SERVICES="80" # web browsing
REMOTE_UDP_SERVICES="53" # DNS
Network that will be used for remote mgmt
(if undefined, no rules will be setup)
NETWORK_MGMT=192.168.0.0/24
If you want to setup a management network (i.e. you've uncommented
the above line) you will need to define the SSH port as well (i.e.
uncomment the below line.) Remember to remove the SSH port from the
TCP_SERVICES string.
SSH_PORT="22"

if ! [-x /sbin/iptables]; then
 exit 0
fi

fw_start () {

 # Input traffic:
 /sbin/iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
 # Services
 if [-n "$TCP_SERVICES"] ; then
 for PORT in $TCP_SERVICES; do

79

Securing services run-
ning on your system

 /sbin/iptables -A INPUT -p tcp --dport ${PORT} -j ACCEPT
 done
 fi
 if [-n "$UDP_SERVICES"] ; then
 for PORT in $UDP_SERVICES; do
 /sbin/iptables -A INPUT -p udp --dport ${PORT} -j ACCEPT
 done
 fi
 # Remote management
 if [-n "$NETWORK_MGMT"] ; then
 /sbin/iptables -A INPUT -p tcp --src ${NETWORK_MGMT} --dport ${SSH_PORT} -j ACCEPT
 fi
 # Remote testing
 /sbin/iptables -A INPUT -p icmp -j ACCEPT
 /sbin/iptables -A INPUT -i lo -j ACCEPT
 /sbin/iptables -P INPUT DROP
 /sbin/iptables -A INPUT -j LOG

 # Output:
 /sbin/iptables -A OUTPUT -j ACCEPT -o lo
 /sbin/iptables -A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
 # ICMP is permitted:
 /sbin/iptables -A OUTPUT -p icmp -j ACCEPT
 # So are security package updates:
 # Note: You can hardcode the IP address here to prevent DNS spoofing
 # and to setup the rules even if DNS does not work but then you
 # will not "see" IP changes for this service:
 /sbin/iptables -A OUTPUT -p tcp -d security.debian.org --dport 80 -j ACCEPT
 # As well as the services we have defined:
 if [-n "$REMOTE_TCP_SERVICES"] ; then
 for PORT in $REMOTE_TCP_SERVICES; do
 /sbin/iptables -A OUTPUT -p tcp --dport ${PORT} -j ACCEPT
 done
 fi
 if [-n "$REMOTE_UDP_SERVICES"] ; then
 for PORT in $REMOTE_UDP_SERVICES; do
 /sbin/iptables -A OUTPUT -p udp --dport ${PORT} -j ACCEPT
 done
 fi
 # All other connections are registered in syslog
 /sbin/iptables -A OUTPUT -j LOG
 /sbin/iptables -A OUTPUT -j REJECT
 /sbin/iptables -P OUTPUT DROP
 # Other network protections
 # (some will only work with some kernel versions)
 echo 1 > /proc/sys/net/ipv4/tcp_syncookies
 echo 0 > /proc/sys/net/ipv4/ip_forward
 echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts
 echo 1 > /proc/sys/net/ipv4/conf/all/log_martians
 echo 1 > /proc/sys/net/ipv4/ip_always_defrag
 echo 1 > /proc/sys/net/ipv4/icmp_ignore_bogus_error_responses
 echo 1 > /proc/sys/net/ipv4/conf/all/rp_filter
 echo 0 > /proc/sys/net/ipv4/conf/all/send_redirects
 echo 0 > /proc/sys/net/ipv4/conf/all/accept_source_route

80

Securing services run-
ning on your system

}

fw_stop () {
 /sbin/iptables -F
 /sbin/iptables -t nat -F
 /sbin/iptables -t mangle -F
 /sbin/iptables -P INPUT DROP
 /sbin/iptables -P FORWARD DROP
 /sbin/iptables -P OUTPUT ACCEPT
}

fw_clear () {
 /sbin/iptables -F
 /sbin/iptables -t nat -F
 /sbin/iptables -t mangle -F
 /sbin/iptables -P INPUT ACCEPT
 /sbin/iptables -P FORWARD ACCEPT
 /sbin/iptables -P OUTPUT ACCEPT
}

case "$1" in
 start|restart)
 echo -n "Starting firewall.."
 fw_stop
 fw_start
 echo "done."
 ;;
 stop)
 echo -n "Stopping firewall.."
 fw_stop
 echo "done."
 ;;
 clear)
 echo -n "Clearing firewall rules.."
 fw_clear
 echo "done."
 ;;
 *)
 echo "Usage: $0 {start|stop|restart|clear}"
 exit 1
 ;;
 esac
exit 0

Instead of including all of the iptables rules in the init.d script you can use the iptables-restore program
to restore the rules saved using iptables-save. In order to do this you need to setup your rules, save the
ruleset under a static location (such as /etc/default/firewall)

Configuring firewall rules through ifup

You can use also the network configuration in /etc/network/interfaces to setup your firewall
rules. For this you will need to:

81

Securing services run-
ning on your system

• Create your firewalling ruleset for when the interface is active.

• Save your ruleset with iptables-save to a file in /etc, for example /etc/iptables.up.rules

• Configure /etc/network/interfaces to use the configured ruleset:

iface eth0 inet static
 address x.x.x.x
 [.. interface configuration ..]
 pre-up iptables-restore < /etc/iptables.up.rules

You can optionally also setup a set of rules to be applied when the network interface is down creating
a set of rules, saving it in /etc/iptables.down.rules and adding this directive to the interface
configuration:

 post-down iptables-restore < /etc/iptables.down.rules

For more advanced firewall configuration scripts through ifupdown you can use the hooks available to
each interface as in the *.d/ directories called with run-parts (see run-parts(8) manual page).

Testing your firewall configuration

Testing your firewall configuration is as easy, and as dangerous, as just running your firewall script (or
enabling the configuration you defined in your firewall configuration application). However, if you are
not careful enough and you are configuring your firewall remotely (like through an SSH connection) you
could lock yourself out.

There are several ways to prevent this. One is running a script in a separate terminal that will remove the
firewall configuration if you don't feed it input. An example of this is:

$ while true; do test=""; read -t 20 -p "OK? " test ; \
 [-z "$test"] && /etc/init.d/firewall clear ; done

Another one is to introduce a backdoor in your system through an alternate mechanism that allows you
to either clear the firewall system or punch a hole in it if something goes awry. For this you can use
knockd and configure it so that a certain port connection attempt sequence will clear the firewall (or add
a temporary rule). Even though the packets will be dropped by the firewall, since knockd binds to the
interface and sees you will be able to work around the problem.

Testing a firewall that is protecting an internal network is a different issue, you will want to look at some of
the tools used for remote vulnerability assessment (see the section called “Remote vulnerability assessment
tools”) to probe the network from the outside in (or from any other direction) to test the effectiveness of
the firewall configuation.

82

Chapter 6. Automatic hardening of
Debian systems

After reading through all the information in the previous chapters you might be wondering "I have to do
quite a lot of things in order to harden my system, couldn't these things be automated?". The answer is yes,
but be careful with automated tools. Some people believe, that a hardening tool does not eliminate the need
for good administration. So do not be fooled to think that you can automate the whole process and will fix
all the related issues. Security is an ever-ongoing process in which the administrator must participate and
cannot just stand away and let the tools do all the work since no single tool can cope with all the possible
security policy implementations, all the attacks and all the environments.

Since woody (Debian 3.0) there are two specific packages that are useful for security hardening. The hard-
en package which takes an approach based on the package dependencies to quickly install valuable secu-
rity packages and remove those with flaws, configuration of the packages must be done by the adminis-
trator. The bastille package that implements a given security policy on the local system based on previous
configuration by the administrator (the building of the configuration can be a guided process done with
simple yes/no questions).

Harden
The harden package tries to make it more easy to install and administer hosts that need good security.
This package should be used by people that want some quick help to enhance the security of the system.
It automatically installs some tools that should enhance security in some way: intrusion detection tools,
security analysis tools, etc. Harden installs the following virtual packages (i.e. no contents, just dependen-
cies or recommendations on others):

• harden-tools: tools to enhance system security (integrity checkers, intrusion detection, kernel patches...)

• harden-environment: helps configure a hardened environment (currently empty).

• harden-servers: removes servers considered insecure for some reason.

• harden-clients: removes clients considered insecure for some reason.

• harden-remoteaudit: tools to remotely audit a system.

• harden-nids: helps to install a network intrusion detection system.

• harden-surveillance: helps to install tools for monitoring of networks and services.

Useful packages which are not a dependence:

• harden-doc: provides this same manual and other security-related documentation packages.

• harden-development: development tools for creating more secure programs.

Be careful because if you have software you need (and which you do not wish to uninstall for some reason)
and it conflicts with some of the packages above you might not be able to fully use harden. The harden
packages do not (directly) do a thing. They do have, however, intentional package conflicts with known
non-secure packages. This way, the Debian packaging system will not approve the installation of these
packages. For example, when you try to install a telnet daemon with harden-servers, apt will say:

83

Automatic harden-
ing of Debian systems

apt-get install telnetd
The following packages will be REMOVED:
 harden-servers
The following NEW packages will be installed:
 telnetd
Do you want to continue? [Y/n]

This should set off some warnings in the administrator head, who should reconsider his actions.

Bastille Linux
http://bastille-linux.sourceforge.net/ is an automatic hardening tool originally oriented towards the Red
Hat and Mandrake Linux distributions. However, the bastille package provided in Debian (since woody)
is patched in order to provide the same functionality for Debian GNU/Linux systems.

Bastille can be used with different frontends (all are documented in their own manpage in the Debian
package) which enables the administrator to:

• Answer questions step by step regarding the desired security of your system (using Interactuve-
Bastille(8)

• Use a default setting for security (amongst three: Lax, Moderate or Paranoia) in a given setup (server
or workstation) and let Bastille decide which security policy to implement (using BastilleChooser(8)).

• Take a predefined configuration file (could be provided by Bastille or made by the administrator) and
implement a given security policy (using AutomatedBastille(8)).

84

http://bastille-linux.sourceforge.net/

Chapter 7. Debian Security
Infrastructure
The Debian Security Team

Debian has a Security Team, that handles security in the stable distribution. Handling security means they
keep track of vulnerabilities that arise in software (watching forums such as Bugtraq, or vuln-dev) and
determine if the stable distribution is affected by it.

Also, the Debian Security Team is the contact point for problems that are coordinated by upstream devel-
opers or organizations such as http://www.cert.org which might affect multiple vendors. That is, when
problems are not Debian-specific. The contact point of the Security Team is mailto:team@security.de-
bian.org which only the members of the security team read.

Sensitive information should be sent to the first address and, in some cases, should be encrypted with the
Debian Security Contact key (as found in the Debian keyring).

Once a probable problem is received by the Security Team it will investigate if the stable distribution is
affected and if it is, a fix is made for the source code base. This fix will sometimes include backporting
the patch made upstream (which usually is some versions ahead of the one distributed by Debian). After
testing of the fix is done, new packages are prepared and published in the http://security.debian.org site so
they can be retrieved through apt (see the section called “Execute a security update”). At the same time
a Debian Security Advisory (DSA) is published on the web site and sent to public mailing lists including
http://lists.debian.org/debian-security-announce and Bugtraq.

Some other frequently asked questions on the Debian Security Team can be found at the section called
“Questions regarding the Debian security team”.

Debian Security Advisories
Debian Security Advisories (DSAs) are made whenever a security vulnerability is discovered that affects
a Debian package. These advisories, signed by one of the Security Team members, include information of
the versions affected as well as the location of the updates. This information is:

• version number for the fix.

• problem type.

• whether it is remote or locally exploitable.

• short description of the package.

• description of the problem.

• description of the exploit.

• description of the fix.

DSAs are published both on http://www.debian.org/ and in the http://www.debian.org/security/. Usually
this does not happen until the website is rebuilt (every four hours) so they might not be present immediately.
The preferred channel is the debian-security-announce mailing list.

85

http://www.cert.org
mailto:team@security.debian.org
mailto:team@security.debian.org
http://security.debian.org
http://lists.debian.org/debian-security-announce
http://www.debian.org/
http://www.debian.org/security/

Debian Security Infrastructure

Interested users can, however (and this is done in some Debian-related portals) use the RDF channel
to download automatically the DSAs to their desktop. Some applications, such as Evolution (an email
client and personal information assistant) and Multiticker (a GNOME applet), can be used to retrieve the
advisories automatically. The RDF channel is available at http://www.debian.org/security/dsa.rdf.

DSAs published on the website might be updated after being sent to the public-mailing lists. A common
update is adding cross references to security vulnerability databases. Also, translations1 of DSAs are not
sent to the security mailing lists but are directly included in the website.

Vulnerability cross references
Debian provides a fully http://www.debian.org/security/crossreferences including all the references avail-
able for all the advisories published since 1998. This table is provided to complement the http://
cve.mitre.org/cve/refs/refmap/source-DEBIAN.html.

You will notice that this table provides references to security databases such as http://www.securityfo-
cus.com/bid, http://www.cert.org/advisories/ and http://www.kb.cert.org/vuls as well as CVE names (see
below). These references are provided for convenience use, but only CVE references are periodically re-
viewed and included.

Advantages of adding cross references to these vulnerability databases are:

• it makes it easier for Debian users to see and track which general (published) advisories have already
been covered by Debian.

• system administrators can learn more about the vulnerability and its impact by following the cross
references.

• this information can be used to cross-check output from vulnerability scanners that include references
to CVE to remove false positives (see the section called “Vulnerability assessment scanner X says my
Debian system is vulnerable!”).

CVE compatibility
Debian Security Advisories were http://www.debian.org/security/CVE-certificate.jpg2 in February 24,
2004.

Debian developers understand the need to provide accurate and up to date information of the security status
of the Debian distribution, allowing users to manage the risk associated with new security vulnerabilities.
CVE enables us to provide standardized references that allow users to develop a https://cve.mitre.org/
compatible/enterprise.html.

The http://cve.mitre.org project is maintained by the MITRE Corporation and provides a list of standard-
ized names for vulnerabilities and security exposures.

Debian believes that providing users with additional information related to security issues that affect the
Debian distribution is extremely important. The inclusion of CVE names in advisories help users associate
generic vulnerabilities with specific Debian updates, which reduces the time spent handling vulnerabilities
that affect our users. Also, it eases the management of security in an environment where CVE-enabled
security tools -such as network or host intrusion detection systems, or vulnerability assessment tools- are
already deployed regardless of whether or not they are based on the Debian distribution.

1 Translations are available in up to ten different languages.
2 The full http://cve.mitre.org/compatible/phase2/SPI_Debian.html is available at CVE

86

http://www.debian.org/security/dsa.rdf
http://www.debian.org/security/crossreferences
http://cve.mitre.org/cve/refs/refmap/source-DEBIAN.html
http://cve.mitre.org/cve/refs/refmap/source-DEBIAN.html
http://www.securityfocus.com/bid
http://www.securityfocus.com/bid
http://www.cert.org/advisories/
http://www.kb.cert.org/vuls
http://www.debian.org/security/CVE-certificate.jpg
https://cve.mitre.org/compatible/enterprise.html
https://cve.mitre.org/compatible/enterprise.html
http://cve.mitre.org
http://cve.mitre.org/compatible/phase2/SPI_Debian.html

Debian Security Infrastructure

Debian provides CVE names for all DSAs released since September 1998. All of the advisories can be
retrieved on the Debian web site, and announcements related to new vulnerabilities include CVE names
if available at the time of their release. Advisories associated with a given CVE name can be searched
directly through the Debian Security Tracker (see below).

In some cases you might not find a given CVE name in published advisories, for example because:

• No Debian products are affected by that vulnerability.

• There is not yet an advisory covering that vulnerability (the security issue might have been reported as
a http://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=security but a fix has not been tested and uploaded).

• An advisory was published before a CVE name was assigned to a given vulnerability (look for an update
at the web site).

Security Tracker
The central database of what the Debian security teams know about vulnerabilities is the http://securi-
ty-tracker.debian.org. It cross references packages, vulnerable and fixed versions for different suites, CVE
names, Debian bug numbers, DSA's and miscellaneous notes. It can be searched, e.g. by CVE name to
see which Debian packages are affected or fixed, or by package to show unresolved security issues. The
only information missing from the tracker is confidential information that the security team received under
embargo.

The package debsecan uses the information in the tracker to report to the administrator of a system which
of the installed packages are vulnerable, and for which updates are available to fix security issues.

Debian Security Build Infrastructure
Since Debian is currently supported in a large number of architectures, administrators sometimes wonder
if a given architecture might take more time to receive security updates than another. As a matter of fact,
except for rare circumstances, updates are available to all architectures at the same time.

Packages in the security archive are autobuilt, just like the regular archive. However, security updates are
a little more different than normal uploads sent by package maintainers since, in some cases, before being
published they need to wait until they can be tested further, an advisory written, or need to wait for a week
or more to avoid publicizing the flaw until all vendors have had a reasonable chance to fix it.

Thus, the security upload archive works with the following procedure:

• Someone finds a security problem.

• Someone fixes the problem, and makes an upload to security-master.debian.org's incoming (this some-
one is usually a Security Team member but can be also a package maintainer with an appropriate fix that
has contacted the Security Team previously). The Changelog includes a testing-security or stable-secu-
rity as target distribution.

• The upload gets checked and processed by a Debian system and moved into queue/accepted, and the
buildds are notified. Files in here can be accessed by the security team and (somewhat indirectly) by
the buildds.

• Security-enabled buildds pick up the source package (prioritized over normal builds), build it, and send
the logs to the security team.

87

http://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=security
http://security-tracker.debian.org
http://security-tracker.debian.org

Debian Security Infrastructure

• The security team reply to the logs, and the newly built packages are uploaded to queue/unchecked,
where they're processed by a Debian system, and moved into queue/accepted.

• When the security team find the source package acceptable (i.e., that it's been correctly built for all
applicable architectures and that it fixes the security hole and doesn't introduce new problems of its
own) they run a script which:

• installs the package into the security archive.

• updates the Packages, Sources and Release files of security.debian.org in the usual way (dp-
kg-scanpackages, dpkg-scansources, ...).

• sets up a template advisory that the security team can finish off.

• forwards the packages to the appropriate proposed-updates so that it can be included in the real archive
as soon as possible.

This procedure, previously done by hand, was tested and put through during the freezing stage of Debian
3.0 woody (July 2002). Thanks to this infrastructure the Security Team was able to have updated packages
ready for the apache and OpenSSH issues for all the supported (almost twenty) architectures in less than
a day.

Developer's guide to security updates
Debian developers that need to coordinate with the security team on fixing in issue in their pack-
ages, can refer to the Developer's Reference section http://www.debian.org/doc/manuals/developers-ref-
erence/pkgs.html#bug-security.

Package signing in Debian
This section could also be titled "how to upgrade/update safely your Debian GNU/Linux system" and it
deserves its own section basically because it is an important part of the Security Infrastructure. Package
signing is an important issue since it avoids tampering of packages distributed in mirrors and of downloads
with man-in-the-middle attacks. Automatic software update is an important feature but it's also important
to remove security threats that could help the distribution of trojans and the compromise of systems during
updates 3

FIXME: probably the Internet Explorer vulnerability handling. certificate chains has an impact on security
updates on Microsoft Windows.

Debian does not provide signed packages but provides a mechanism available since Debian 4.0 (codename
etch) to check for downloaded package's integrity4. For more information, see the section called “Secure
apt”.

This issue is better described in the http://www.cryptnet.net/fdp/crypto/strong_distro.html by V. Alex
Brennen.

The current scheme for package signature checks
The current scheme for package signature checking using apt is:

3 Some operating systems have already been plagued with automatic-updates problems such as the http://www.cunap.com/~hardingr/projects/osx/
exploit.html.
4 Older releases, such as Debian 3.1 sarge can use this feature by using backported versions of this package management tool

88

http://www.debian.org/doc/manuals/developers-reference/pkgs.html#bug-security
http://www.debian.org/doc/manuals/developers-reference/pkgs.html#bug-security
http://www.cryptnet.net/fdp/crypto/strong_distro.html
http://www.cunap.com/~hardingr/projects/osx/exploit.html
http://www.cunap.com/~hardingr/projects/osx/exploit.html

Debian Security Infrastructure

• the Release file includes the MD5 sum of Packages.gz (which contains the MD5 sums of pack-
ages) and will be signed. The signature is one of a trusted source.

• This signed Release file is downloaded by 'apt-get update' and stored along with Packages.gz.

• When a package is going to be installed, it is first downloaded, then the MD5 sum is generated.

• The signed Release file is checked (signature ok) and it extracts from it the MD5 sum for the Pack-
ages.gz file, the Packages.gz checksum is generated and (if ok) the MD5 sum of the downloaded
package is extracted from it.

• If the MD5 sum from the downloaded package is the same as the one in the Packages.gz file the
package will be installed, otherwise the administrator will be alerted and the package will be left in
the cache (so the administrator can decide whether to install it or not). If the package is not in the
Packages.gz and the administrator has configured the system to only install checked packages it
will not be installed either.

By following the chain of MD5 sums apt is capable of verifying that a package originates from a a specific
release. This is less flexible than signing each package one by one, but can be combined with that scheme
too (see below).

This scheme is http://lists.debian.org/debian-devel/2003/12/msg01986.html in apt 0.6 and is available
since the Debian 4.0 release. For more information see the section called “Secure apt”. Packages that pro-
vide a front-end to apt need to be modified to adapt to this new feature; this is the case of aptitude which
was http://lists.debian.org/debian-devel/2005/03/msg02641.html to adapt to this scheme. Front-ends cur-
rently known to work properly with this feature include aptitude and synaptic.

Package signing has been discussed in Debian for quite some time, for more information you can read:
http://www.debian.org/News/weekly/2001/8/ and http://www.debian.org/News/weekly/2000/11/.

Secure apt

The apt 0.6 release, available since Debian 4.0 etch and later releases, includes apt-secure (also known
as secure apt) which is a tool that will allow a system administrator to test the integrity of the packages
downloaded through the above scheme. This release includes the tool apt-key for adding new keys to apt's
keyring, which by default includes only the current Debian archive signing key.

These changes are based on the patch for apt (available in http://bugs.debian.org/cgi-bin/bugreport.c-
gi?bug=203741) which provides this implementation.

Secure apt works by checking the distribution through the Release file, as discussed in the section called
“Per distribution release check”. Typically, this process will be transparent to the administrator although
you will need to intervene every year5 to add the new archive key when it is rotated, for more information
on the steps an administrator needs to take a look at the section called “Safely adding a key”.

This feature is still under development, if you believe you find bugs in it, please, make first sure you are
using the latest version (as this package might change quite a bit before it is finally released) and, if running
the latest version, submit a bug against the apt package.

You can find more information at http://wiki.debian.org/SecureApt and the official documen-
tation: http://www.enyo.de/fw/software/apt-secure/ and https://web.archive.org/web/20070206063141/
http://www.syntaxpolice.org/apt-secure/.

5 Until an automatic mechanism is developed.

89

http://lists.debian.org/debian-devel/2003/12/msg01986.html
http://lists.debian.org/debian-devel/2005/03/msg02641.html
http://www.debian.org/News/weekly/2001/8/
http://www.debian.org/News/weekly/2000/11/
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=203741
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=203741
http://wiki.debian.org/SecureApt
http://www.enyo.de/fw/software/apt-secure/
https://web.archive.org/web/20070206063141/http://www.syntaxpolice.org/apt-secure/
https://web.archive.org/web/20070206063141/http://www.syntaxpolice.org/apt-secure/

Debian Security Infrastructure

Per distribution release check

This section describes how the distribution release check mechanism works, it was written by Joey Hess
and is also available at the http://wiki.debian.org/SecureApt.

Basic concepts

Here are a few basic concepts that you'll need to understand for the rest of this section.

A checksum is a method of taking a file and boiling it down to a reasonably short number that uniquely
identifies the content of the file. This is a lot harder to do well than it might seem, and the most commonly
used type of checksum, the MD5 sum, is in the process of being broken.

Public key cryptography is based on pairs of keys, a public key and a private key. The public key is given
out to the world; the private key must be kept a secret. Anyone possessing the public key can encrypt
a message so that it can only be read by someone possessing the private key. It's also possible to use a
private key to sign a file, not encrypt it. If a private key is used to sign a file, then anyone who has the
public key can check that the file was signed by that key. No one who doesn't have the private key can
forge such a signature.

These keys are quite long numbers (1024 to 2048 digits or longer), and to make them easier to work with
they have a key id, which is a shorter, 8 or 16 digit number that can be used to refer to them.

gpg is the tool used in secure apt to sign files and check their signatures.

apt-key is a program that is used to manage a keyring of gpg keys for secure apt. The keyring is kept in
the file /etc/apt/trusted.gpg (not to be confused with the related but not very interesting /etc/
apt/trustdb.gpg). apt-key can be used to show the keys in the keyring, and to add or remove a key.

Release checksums

A Debian archive contains a Release file, which is updated each time any of the packages in the archive
change. Among other things, the Release file contains some MD5 sums of other files in the archive.
An excerpt of an example Release file:

MD5Sum:
 6b05b392f792ba5a436d590c129de21f 3453 Packages
 1356479a23edda7a69f24eb8d6f4a14b 1131 Packages.gz
 2a5167881adc9ad1a8864f281b1eb959 1715 Sources
 88de3533bf6e054d1799f8e49b6aed8b 658 Sources.gz

The Release files also include SHA-1 checksums, which will be useful once MD5 sums become fully
broken, however apt doesn't use them yet.

Now if we look inside a Packages file, we'll find more MD5 sums, one for each package listed in it.
For example:

 Package: uqm
 Priority: optional
 ...
 Filename: unstable/uqm_0.4.0-1_i386.deb

90

http://wiki.debian.org/SecureApt

Debian Security Infrastructure

 Size: 580558
 MD5sum: 864ec6157c1eea88acfef44d0f34d219

These two checksums can be used to verify that you have downloaded a correct copy of the Packages
file, with a md5sum that matches the one in the Release file. And when it downloads an individual
package, it can also check its md5sum against the content of the Packages file. If apt fails at either of
these steps, it will abort.

None of this is new in secure apt, but it does provide the foundation. Notice that so far there is one file that
apt doesn't have a way to check: The Release file. Secure apt is all about making apt verify the Release
file before it does anything else with it, and plugging this hole, so that there is a chain of verification from
the package that you are going to install all the way back to the provider of the package.

Verification of the Release file

To verify the Release file, a gpg signature is added for the Release file. This is put in a file named
Release.gpg that is shipped alongside the Release file. It looks something like this 6 , although only
gpg actually looks at its contents normally:

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.1 (GNU/Linux)

iD8DBQBCqKO1nukh8wJbxY8RAsfHAJ9hu8oGNRAl2MSmP5+z2RZb6FJ8kACfWvEx
UBGPVc7jbHHsg78EhMBlV/U=
=x6og
-----END PGP SIGNATURE-----

Check of Release.gpg by apt

Secure apt always downloads Release.gpg files when it's downloading Release files, and if it cannot
download the Release.gpg, or if the signature is bad, it will complain, and will make note that the
Packages files that the Release file points to, and all the packages listed therein, are from an untrusted
source. Here's how it looks during an apt-get update:

W: GPG error: http://ftp.us.debian.org testing Release: The following signatures
 couldn't be verified because the public key is not available: NO_PUBKEY 010908312D230C5F

Note that the second half of the long number is the key id of the key that apt doesn't know about, in this
case that's 2D230C5F.

If you ignore that warning and try to install a package later, apt will warn again:

WARNING: The following packages cannot be authenticated!
 libglib-perl libgtk2-perl
Install these packages without verification [y/N]?

If you say Y here you have no way to know if the file you're getting is the package you're supposed to
install, or if it's something else entirely that somebody that can intercept the communication against the
server7 has arranged for you, containing a nasty suprise.

6 Technically speaking, this is an ASCII-armored detached gpg signature.
7 Or has poisoned your DNS, or is spoofing the server, or has replaced the file in the mirror you are using, etc.

91

Debian Security Infrastructure

Note that you can disable these checks by running apt with --allow-unauthenticated.

It's also worth noting that newer versions of the Debian installer use the same signed Release file mech-
anism during their debootstrap of the Debian base system, before apt is available, and that the installer
even uses this system to verify pieces of itself that it downloads from the net. Also, Debian does not cur-
rently sign the Release files on its CDs; apt can be configured to always trust packages from CDs so
this is not a large problem.

How to tell apt what to trust

So the security of the whole system depends on there being a Release.gpg file, which signs a Release
file, and of apt checking that signature using gpg. To check the signature, it has to know the public key of
the person who signed the file. These keys are kept in apt's own keyring (/etc/apt/trusted.gpg),
and managing the keys is where secure apt comes in.

By default, Debian systems come preconfigured with the Debian archive key in the keyring.

apt-key list
/etc/apt/trusted.gpg

pub 1024D/4F368D5D 2005-01-31 [expires: 2006-01-31]
uid Debian Archive Automatic Signing Key (2005) <ftpmaster@debian.org>

Here 4F368D5D is the key id, and notice that this key was only valid for a one year period. Debian rotates
these keys as a last line of defense against some sort of security breach breaking a key.

That will make apt trust the official Debian archive, but if you add some other apt repository to /etc/
apt/sources.list, you'll also have to give apt its key if you want apt to trust it. Once you have the
key and have verified it, it's a simple matter of running apt-key add file to add it. Getting the key and
verifying it are the trickier parts.

Finding the key for a repository

The debian-archive-keyring package is used to distribute keys to apt. Upgrades to this package can add
(or remove) gpg keys for the main Debian archive.

For other archives, there is not yet a standard location where you can find the key for a given apt repository.
There's a rough standard of putting the key up on the web page for the repository or as a file in the repository
itself, but no real standard, so you might have to hunt for it.

The Debian archive signing key is available at https://ftp-master.debian.org/keys.html.8

gpg itself has a standard way to distribute keys, using a keyserver that gpg can download a key from and
add it to its keyring. For example:

$ gpg --keyserver pgpkeys.mit.edu --recv-key 2D230C5F
gpg: requesting key 2D230C5F from hkp server pgpkeys.mit.edu
gpg: key 2D230C5F: public key "Debian Archive Automatic Signing Key (2006) <ftpm
aster@debian.org>" imported
gpg: Total number processed: 1

8 "ziyi" is the name of the tool used for signing on the Debian servers, the name is based on the name of a http://en.wikipedia.org/wiki/Zhang_Ziyi.

92

https://ftp-master.debian.org/keys.html
http://en.wikipedia.org/wiki/Zhang_Ziyi

Debian Security Infrastructure

gpg: imported: 1

You can then export that key from your own keyring and feed it to apt-key:

$ gpg -a --export 2D230C5F | sudo apt-key add -
gpg: no ultimately trusted keys found
OK

The "gpg: no ultimately trusted keys found" warning means that gpg was not configured to ultimately trust
a specific key. Trust settings are part of OpenPGPs Web-of-Trust which does not apply here. So there is
no problem with this warning. In typical setups the user's own key is ultimately trusted.

Safely adding a key

By adding a key to apt's keyring, you're telling apt to trust everything signed by the key, and this lets you
know for sure that apt won't install anything not signed by the person who possesses the private key. But
if you're sufficiently paranoid, you can see that this just pushes things up a level, now instead of having
to worry if a package, or a Release file is valid, you can worry about whether you've actually gotten
the right key. Is the key file from https://ftp-master.debian.org/keys.html mentioned above really Debian's
archive signing key, or has it been modified (or this document lies).

It's good to be paranoid in security, but verifying things from here is harder. gpg has the concept of a chain
of trust, which can start at someone you're sure of, who signs someone's key, who signs some other key,
etc., until you get to the archive key. If you're sufficiently paranoid you'll want to check that your archive
key is signed by a key that you can trust, with a trust chain that goes back to someone you know personally.
If you want to do this, visit a Debian conference or perhaps a local LUG for a key signing 9.

If you can't afford this level of paranoia, do whatever feels appropriate to you when adding a new apt
source and a new key. Maybe you'll want to mail the person providing the key and verify it, or maybe
you're willing to take your chances with downloading it and assuming you got the real thing. The important
thing is that by reducing the problem to what archive keys to trust, secure apt lets you be as careful and
secure as it suits you to be.

Verifying key integrity

You can verify the fingerprint as well as the signatures on the key. Retrieving the fingerprint can be done
for multiple sources, you can talk to Debian Developers on IRC, read the mailing list where the key change
will be announced or any other additional means to verify the fingerprint. For example you can do this:

$ GET http://ftp-master.debian.org/ziyi_key_2006.asc | gpg --import
gpg: key 2D230C5F: public key "Debian Archive Automatic Signing Key (2006)
 <ftpmaster&debian.org>" imported
gpg: Total number processed: 1
gpg: imported: 1
$ gpg --check-sigs --fingerprint 2D230C5F
pub 1024D/2D230C5F 2006-01-03 [expires: 2007-02-07]
 Key fingerprint = 0847 50FC 01A6 D388 A643 D869 0109 0831 2D23 0C5F
uid Debian Archive Automatic Signing Key (2006) <ftpmaster@debian.org>
sig!3 2D230C5F 2006-01-03 Debian Archive Automatic Signing Key

9 Not all apt repository keys are signed at all by another key. Maybe the person setting up the repository doesn't have another key, or maybe they
don't feel comfortable signing such a role key with their main key. For information on setting up a key for a repository see the section called “Release
check of non Debian sources”.

93

https://ftp-master.debian.org/keys.html

Debian Security Infrastructure

 (2006) <ftpmaster@debian.org>
sig! 2A4E3EAA 2006-01-03 Anthony Towns <aj@azure.humbug.org.au>
sig! 4F368D5D 2006-01-03 Debian Archive Automatic Signing Key
 (2005) <ftpmaster@debian.org>
sig! 29982E5A 2006-01-04 Steve Langasek <vorlon@dodds.net>
sig! FD6645AB 2006-01-04 Ryan Murray <rmurray@cyberhqz.com>
sig! AB2A91F5 2006-01-04 James Troup <james@nocrew.org>

and then as in the section called “Package signing in Debian” check the trust path from your key (or a key
you trust) to at least one of the keys used to sign the archive key. If you are sufficiently paranoid you will
tell apt to trust the key only if you find an acceptable path:

$ gpg --export -a 2D230C5F | sudo apt-key add -
Ok

Note that the key is signed with the previous archive key, so theoretically you can just build on your
previous trust.

Debian archive key yearly rotation

As mentioned above, the Debian archive signing key is changed each year, in January. Since secure apt is
young, we don't have a great deal of experience with changing the key and there are still rough spots.

In January 2006, a new key for 2006 was made and the Release file began to be signed by it, but to try
to avoid breaking systems that had the old 2005 key, the Release file was signed by that as well. The
intent was that apt would accept one signature or the other depending on the key it had, but apt turned out
to be buggy and refused to trust the file unless it had both keys and was able to check both signatures. This
was fixed in apt version 0.6.43.1. There was also confusion about how the key was distributed to users
who already had systems using secure apt; initially it was uploaded to the web site with no announcement
and no real way to verify it and users were forced to download it by hand.

In January 2006, a new key for 2006 was made and the Release file began to be signed by it, but to try to
avoid breaking systems that had the old 2005 key, the Release file was signed by that as well. In order
to prevent confusion on the best distribution mechanism for users who already have systems using secure
apt, the debian-archive-keyring package was introduced, which manages apt keyring updates.

Known release checking problems

One not so obvious problem is that if your clock is very far off, secure apt will not work. If it's set to a
date in the past, such as 1999, apt will fail with an unhelpful message such as this:

W: GPG error: http://archive.progeny.com sid Release: Unknown error executing gpg

Although apt-key list will make the problem plain:

gpg: key 2D230C5F was created 192324901 seconds in the future (time warp or clock problem)
gpg: key 2D230C5F was created 192324901 seconds in the future (time warp or clock problem)
pub 1024D/2D230C5F 2006-01-03
uid Debian Archive Automatic Signing Key (2006) <ftpmaster@debian.org>

If it's set to a date too far in the future, apt will treat the keys as expired.

94

Debian Security Infrastructure

Another problem you may encouter if using testing or unstable is that if you have not run apt-get update
lately and apt-get install a package, apt might complain that it cannot be authenticated (why does it do
this?). apt-get update will fix this.

Manual per distribution release check

In case you want to add now the additional security checks and don't want or cannot run the latest apt
version10 you can use the script below, provided by Anthony Towns. This script can automatically do
some new security checks to allow the user to be sure that the software s/he's downloading matches the
software Debian's distributing. This stops Debian developers from hacking into someone's system without
the accountability provided by uploading to the main archive, or mirrors mirroring something almost, but
not quite like Debian, or mirrors providing out of date copies of unstable with known security problems.

This sample code, renamed as apt-check-sigs, should be used in the following way:

apt-get update
apt-check-sigs
(...results...)
apt-get dist-upgrade

First you need to:

• get the keys the archive software uses to sign Release files from https://ftp-master.de-
bian.org/keys.html and add them to ~/.gnupg/trustedkeys.gpg (which is what gpgv uses by
default).

 gpg --no-default-keyring --keyring trustedkeys.gpg --import ziyi_key_2006.asc

• remove any /etc/apt/sources.list lines that don't use the normal "dists" structure, or change
the script so that it works with them.

• be prepared to ignore the fact that Debian security updates don't have signed Release files, and that
Sources files don't have appropriate checksums in the Release file (yet).

• be prepared to check that the appropriate sources are signed by the appropriate keys.

This is the example code for apt-check-sigs, the latest version can be retrieved from http://people.de-
bian.org/~ajt/apt-check-sigs. This code is currently in beta, for more information read http://lists.de-
bian.org/debian-devel/2002/07/msg00421.html.

#!/bin/bash

Copyright (c) 2001 Anthony Towns <ajt@debian.org>
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,

10 Either because you are using the stable, sarge, release or an older release or because you don't want to use the latest apt version, although we
would really appreciate testing of it.

95

https://ftp-master.debian.org/keys.html
https://ftp-master.debian.org/keys.html
http://people.debian.org/~ajt/apt-check-sigs
http://people.debian.org/~ajt/apt-check-sigs
http://lists.debian.org/debian-devel/2002/07/msg00421.html
http://lists.debian.org/debian-devel/2002/07/msg00421.html

Debian Security Infrastructure

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

rm -rf /tmp/apt-release-check
mkdir /tmp/apt-release-check || exit 1
cd /tmp/apt-release-check

>OK
>MISSING
>NOCHECK
>BAD

arch=`dpkg --print-installation-architecture`

am_root () {
 [`id -u` -eq 0]
}

get_md5sumsize () {
 cat "$1" | awk '/^MD5Sum:/,/^SHA1:/' |
 MYARG="$2" perl -ne '@f = split /\s+/; if ($f[3] eq $ENV{"MYARG"}) {
print "$f[1] $f[2]\n"; exit(0); }'
}

checkit () {
 local FILE="$1"
 local LOOKUP="$2"

 Y="`get_md5sumsize Release "$LOOKUP"`"
 Y="`echo "$Y" | sed 's/^ *//;s/ */ /g'`"

 if [! -e "/var/lib/apt/lists/$FILE"]; then
 if ["$Y" = ""]; then
 # No file, but not needed anyway
 echo "OK"
 return
 fi
 echo "$FILE" >>MISSING
 echo "MISSING $Y"
 return
 fi
 if ["$Y" = ""]; then
 echo "$FILE" >>NOCHECK
 echo "NOCHECK"
 return
 fi
 X="`md5sum < /var/lib/apt/lists/$FILE | cut -d\ -f1` `wc -c < /var/lib
/apt/lists/$FILE`"
 X="`echo "$X" | sed 's/^ *//;s/ */ /g'`"
 if ["$X" != "$Y"]; then
 echo "$FILE" >>BAD
 echo "BAD"
 return

96

Debian Security Infrastructure

 fi
 echo "$FILE" >>OK
 echo "OK"
}

echo
echo "Checking sources in /etc/apt/sources.list:"
echo "~~"
echo
(echo "You should take care to ensure that the distributions you're downloading
"
echo "are the ones you think you are downloading, and that they are as up to"
echo "date as you would expect (testing and unstable should be no more than"
echo "two or three days out of date, stable-updates no more than a few weeks"
echo "or a month)."
) | fmt
echo

cat /etc/apt/sources.list |
 sed 's/^ *//' | grep '^[^#]' |
 while read ty url dist comps; do
 if ["${url%%:*}" = "http" -o "${url%%:*}" = "ftp"]; then
 baseurl="${url#*://}"
 else
 continue
 fi

 echo "Source: ${ty} ${url} ${dist} ${comps}"

 rm -f Release Release.gpg
 lynx -reload -dump "${url}/dists/${dist}/Release" >/dev/null 2>&1
 wget -q -O Release "${url}/dists/${dist}/Release"

 if ! grep -q '^' Release; then
 echo " * NO TOP-LEVEL Release FILE"
 >Release
 else
 origline=`sed -n 's/^Origin: *//p' Release | head -1`
 lablline=`sed -n 's/^Label: *//p' Release | head -1`
 suitline=`sed -n 's/^Suite: *//p' Release | head -1`
 codeline=`sed -n 's/^Codename: *//p' Release | head -1`
 dateline=`grep "^Date:" Release | head -1`
 dscrline=`grep "^Description:" Release | head -1`
 echo " o Origin: $origline/$lablline"
 echo " o Suite: $suitline/$codeline"
 echo " o $dateline"
 echo " o $dscrline"

 if ["${dist%%/*}" != "$suitline" -a "${dist%%/*}" != "$codeline"]; then
 echo " * WARNING: asked for $dist, got $suitline/$codeline"
 fi

 lynx -reload -dump "${url}/dists/${dist}/Release.gpg" >/dev/null 2>&1
 wget -q -O Release.gpg "${url}/dists/${dist}/Release.gpg"

97

Debian Security Infrastructure

 gpgv --status-fd 3 Release.gpg Release 3>&1 >/dev/null 2>&1 | sed -n "s/^\[GNUPG:\] //p" | (okay=0; err=""; while read gpgcode rest; do
 if ["$gpgcode" = "GOODSIG"]; then
 if ["$err" != ""]; then
 echo " * Signed by ${err# } key: ${rest#* }"
 else
 echo " o Signed by: ${rest#* }"
 okay=1
 fi
 err=""
 elif ["$gpgcode" = "BADSIG"]; then
 echo " * BAD SIGNATURE BY: ${rest#* }"
 err=""
 elif ["$gpgcode" = "ERRSIG"]; then
 echo " * COULDN'T CHECK SIGNATURE BY KEYID: ${rest %% *}"
 err=""
 elif ["$gpgcode" = "SIGREVOKED"]; then
 err="$err REVOKED"
 elif ["$gpgcode" = "SIGEXPIRED"]; then
 err="$err EXPIRED"
 fi
 done
 if ["$okay" != 1]; then
 echo " * NO VALID SIGNATURE"
 >Release
 fi)
 fi
 okaycomps=""
 for comp in $comps; do
 if ["$ty" = "deb"]; then
 X=$(checkit "`echo "${baseurl}/dists/${dist}/${comp}/binary-${arch}/Release" | sed 's,//*,_,g'`" "${comp}/binary-${arch}/Release")
 Y=$(checkit "`echo "${baseurl}/dists/${dist}/${comp}/binary-${arch}/Packages" | sed 's,//*,_,g'`" "${comp}/binary-${arch}/Packages")
 if ["$X $Y" = "OK OK"]; then
 okaycomps="$okaycomps $comp"
 else
 echo " * PROBLEMS WITH $comp ($X, $Y)"
 fi
 elif ["$ty" = "deb-src"]; then
 X=$(checkit "`echo "${baseurl}/dists/${dist}/${comp}/source/Release" | sed 's,//*,_,g'`" "${comp}/source/Release")
 Y=$(checkit "`echo "${baseurl}/dists/${dist}/${comp}/source/Sources" | sed 's,//*,_,g'`" "${comp}/source/Sources")
 if ["$X $Y" = "OK OK"]; then
 okaycomps="$okaycomps $comp"
 else
 echo " * PROBLEMS WITH component $comp ($X, $Y)"
 fi
 fi
 done
 ["$okaycomps" = ""] || echo " o Okay:$okaycomps"
 echo
 done

echo "Results"
echo "~~~~~~~"
echo

98

Debian Security Infrastructure

allokay=true

cd /tmp/apt-release-check
diff <(cat BAD MISSING NOCHECK OK | sort) <(cd /var/lib/apt/lists && find . -type f -maxdepth 1 | sed 's,^\./,,g' | grep '_' | sort) | sed -n 's/^> //p' >UNVALIDATED

cd /tmp/apt-release-check
if grep -q ^ UNVALIDATED; then
 allokay=false
 (echo "The following files in /var/lib/apt/lists have not been validated."
 echo "This could turn out to be a harmless indication that this script"
 echo "is buggy or out of date, or it could let trojaned packages get onto"
 echo "your system."
) | fmt
 echo
 sed 's/^/ /' < UNVALIDATED
 echo
fi

if grep -q ^ BAD; then
 allokay=false
 (echo "The contents of the following files in /var/lib/apt/lists does not"
 echo "match what was expected. This may mean these sources are out of date,"
 echo "that the archive is having problems, or that someone is actively"
 echo "using your mirror to distribute trojans."
 if am_root; then
 echo "The files have been renamed to have the extension .FAILED and"
 echo "will be ignored by apt."
 cat BAD | while read a; do
 mv /var/lib/apt/lists/$a /var/lib/apt/lists/${a}.FAILED
 done
 fi) | fmt
 echo
 sed 's/^/ /' < BAD
 echo
fi

if grep -q ^ MISSING; then
 allokay=false
 (echo "The following files from /var/lib/apt/lists were missing. This"
 echo "may cause you to miss out on updates to some vulnerable packages."
) | fmt
 echo
 sed 's/^/ /' > MISSING
 echo
fi

if grep -q ^ NOCHECK; then
 allokay=false
 (echo "The contents of the following files in /var/lib/apt/lists could not"
 echo "be validated due to the lack of a signed Release file, or the lack"
 echo "of an appropriate entry in a signed Release file. This probably"
 echo "means that the maintainers of these sources are slack, but may mean"
 echo "these sources are being actively used to distribute trojans."

99

Debian Security Infrastructure

 if am_root; then
 echo "The files have been renamed to have the extension .FAILED and"
 echo "will be ignored by apt."
 cat NOCHECK | while read a; do
 mv /var/lib/apt/lists/$a /var/lib/apt/lists/${a}.FAILED
 done
 fi) | fmt
 echo
 sed 's/^/ /' > NOCHECK
 echo
fi

if $allokay; then
 echo 'Everything seems okay!'
 echo
fi

rm -rf /tmp/apt-release-check

You might need to apply the following patch for sid since md5sum adds an '-' after the sum when the
input is stdin:

@@ -37,7 +37,7 @@
 local LOOKUP="$2"

 Y="`get_md5sumsize Release "$LOOKUP"`"
- Y="`echo "$Y" | sed 's/^ *//;s/ */ /g'`"
+ Y="`echo "$Y" | sed 's/-//;s/^ *//;s/ */ /g'`"

 if [! -e "/var/lib/apt/lists/$FILE"]; then
 if ["$Y" = ""]; then
@@ -55,7 +55,7 @@
 return
 fi
 X="`md5sum < /var/lib/apt/lists/$FILE` `wc -c < /var/lib/apt/lists/$FILE`"
- X="`echo "$X" | sed 's/^ *//;s/ */ /g'`"
+ X="`echo "$X" | sed 's/-//;s/^ *//;s/ */ /g'`"
 if ["$X" != "$Y"]; then
 echo "$FILE" >>BAD
 echo "BAD"

Release check of non Debian sources
Notice that, when using the latest apt version (with secure apt) no extra effort should be required on your
part unless you use non-Debian sources, in which case an extra confirmation step will be required by
apt-get. This is avoided by providing Release and Release.gpg files in the non-Debian sources.
The Release file can be generated with apt-ftparchive (available in apt-utils 0.5.0 and later), the Re-
lease.gpg is just a detached signature. To generate both follow this simple procedure:

$ rm -f dists/unstable/Release
$ apt-ftparchive release dists/unstable > dists/unstable/Release
$ gpg --sign -ba -o dists/unstable/Release.gpg dists/unstable/Release

100

Debian Security Infrastructure

Alternative per-package signing scheme
The additional scheme of signing each and every packages allows packages to be checked when they are
no longer referenced by an existing Packages file, and also third-party packages where no Packages
ever existed for them can be also used in Debian but will not be default scheme.

This package signing scheme can be implemented using debsig-verify and debsigs. These two packages
can sign and verify embedded signatures in the .deb itself. Debian already has the capability to do this
now, but there is no feature plan to implement the policy or other tools since the archive signing scheme is
prefered. These tools are available for users and archive administrators that would rather use this scheme
instead.

Latest dpkg versions (since 1.9.21) incorporate a http://lists.debian.org/debian-dpkg/2001/03/ms-
g00024.html that provides this functionality as soon as debsig-verify is installed.

NOTE: Currently /etc/dpkg/dpkg.cfg ships with "no-debsig" as per default.

NOTE2: Signatures from developers are currently stripped when they enter off the package archive since
the currently preferred method is release checks as described previously.

101

http://lists.debian.org/debian-dpkg/2001/03/msg00024.html
http://lists.debian.org/debian-dpkg/2001/03/msg00024.html

Chapter 8. Security tools in Debian
FIXME: More content needed.

Debian provides also a number of security tools that can make a Debian box suited for security purpos-
es. These purposes include protection of information systems through firewalls (either packet or applica-
tion-level), intrusion detection (both network and host based), vulnerability assessment, antivirus, private
networks, etc.

Since Debian 3.0 (woody), the distribution features cryptographic software integrated into the main distri-
bution. OpenSSH and GNU Privacy Guard are included in the default install, and strong encryption is now
present in web browsers and web servers, databases, and so forth. Further integration of cryptography is
planned for future releases. This software, due to export restrictions in the US, was not distributed along
with the main distribution but included only in non-US sites.

Remote vulnerability assessment tools
The tools provided by Debian to perform remote vulnerability assessment are: 1

• nessus

• raccess

• nikto (whisker's replacement)

By far, the most complete and up-to-date tools is nessus which is composed of a client (nessus) used as a
GUI and a server (nessusd) which launches the programmed attacks. Nessus includes remote vulnerabili-
ties for quite a number of systems including network appliances, ftp servers, www servers, etc. The latest
security plugins are able even to parse a web site and try to discover which interactive pages are available
which could be attacked. There are also Java and Win32 clients (not included in Debian) which can be
used to contact the management server.

nikto is a web-only vulnerability assessment scanner including anti-IDS tactics (most of which are not
anti-IDS anymore). It is one of the best cgi-scanners available, being able to detect a WWW server and
launch only a given set of attacks against it. The database used for scanning can be easily modified to
provide for new information.

Network scanner tools
Debian does provide some tools used for remote scanning of hosts (but not vulnerability assessment).
These tools are, in some cases, used by vulnerability assessment scanners as the first type of "attack" run
against remote hosts in an attempt to determine remote services available. Currently Debian provides:

• nmap

• xprobe

• p0f

• knocker

1 Some of them are provided when installing the harden-remoteaudit package.

102

Security tools in Debian

• isic

• hping2

• icmpush

• nbtscan (for SMB /NetBIOS audits)

• fragrouter

• strobe (in the netdiag package)

• irpas

While xprobe provide only remote operating system detection (using TCP/IP fingerprinting, nmap and
knocker do both operating system detection and port scanning of the remote hosts. On the other hand,
hping2 and icmpush can be used for remote ICMP attack techniques.

Designed specifically for SMB networks, nbtscan can be used to scan IP networks and retrieve name
information from SMB-enabled servers, including: usernames, network names, MAC addresses...

On the other hand, fragrouter can be used to test network intrusion detection systems and see if the NIDS
can be eluded by fragmentation attacks.

FIXME: Check http://bugs.debian.org/153117 (ITP fragrouter) to see if it's included.

FIXME add information based on https://web.archive.org/web/20040725013857/http://www.gi-
ac.org/practical/gcux/Stephanie_Thomas_GCUX.pdf which describes how to use Debian and a laptop to
scan for wireless (803.1) networks (link not there any more).

Internal audits
Currently, only the tiger tool used in Debian can be used to perform internal (also called white box) audit
of hosts in order to determine if the file system is properly set up, which processes are listening on the
host, etc.

Auditing source code
Debian provides several packages that can be used to audit C/C++ source code programs and find pro-
gramming errors that might lead to potential security flaws:

• flawfinder

• rats

• splint

• pscan

Virtual Private Networks
A virtual private network (VPN) is a group of two or more computer systems, typically connected to a
private network with limited public network access, that communicate securely over a public network.
VPNs may connect a single computer to a private network (client-server), or a remote LAN to a private

103

http://bugs.debian.org/153117
https://web.archive.org/web/20040725013857/http://www.giac.org/practical/gcux/Stephanie_Thomas_GCUX.pdf
https://web.archive.org/web/20040725013857/http://www.giac.org/practical/gcux/Stephanie_Thomas_GCUX.pdf

Security tools in Debian

network (server-server). VPNs often include the use of encryption, strong authentication of remote users
or hosts, and methods for hiding the private network's topology.

Debian provides quite a few packages to set up encrypted virtual private networks:

• vtun

• tunnelv (non-US section)

• cipe-source, cipe-common

• tinc

• secvpn

• pptpd

• openvpn

• openswan (http://www.openswan.org/)

FIXME: Update the information here since it was written with FreeSWAN in mind. Check Bug #237764
and Message-Id: <200412101215.04040.rmayr@debian.org>.

The OpenSWAN package is probably the best choice overall, since it promises to interoperate with almost
anything that uses the IP security protocol, IPsec (RFC 2411). However, the other packages listed above
can also help you get a secure tunnel up in a hurry. The point to point tunneling protocol (PPTP) is a
proprietary Microsoft protocol for VPN. It is supported under Linux, but is known to have serious security
issues.

For more information see the http://www.tldp.org/HOWTO/VPN-Masquerade-HOWTO.html (cov-
ers IPsec and PPTP), http://www.tldp.org/HOWTO/VPN-HOWTO.html (covers PPP over SSH),
http://www.tldp.org/HOWTO/mini/Cipe+Masq.html, and http://www.tldp.org/HOWTO/mini/ppp-ssh/in-
dex.html.

Also worth checking out is http://yavipin.sourceforge.net/, but no Debian packages seem to be available
yet.

Point to Point tunneling
If you want to provide a tunneling server for a mixed environment (both Microsoft operating systems and
Linux clients) and IPsec is not an option (since it's only provided for Windows 2000 and Windows XP),
you can use PoPToP (Point to Point Tunneling Server), provided in the pptpd package.

If you want to use Microsoft's authentication and encryption with the server provided in the ppp package,
note the following from the FAQ:

It is only necessary to use PPP 2.3.8 if you want Microsoft compatible
MSCHAPv2/MPPE authentication and encryption. The reason for this is that
the MSCHAPv2/MPPE patch currently supplied (19990813) is against PPP
2.3.8. If you don't need Microsoft compatible authentication/encryption
any 2.3.x PPP source will be fine.

However, you also have to apply the kernel patch provided by the kernel-patch-mppe package, which
provides the pp_mppe module for pppd.

104

http://www.openswan.org/
http://www.tldp.org/HOWTO/VPN-Masquerade-HOWTO.html
http://www.tldp.org/HOWTO/VPN-HOWTO.html
http://www.tldp.org/HOWTO/mini/Cipe+Masq.html
http://www.tldp.org/HOWTO/mini/ppp-ssh/index.html
http://www.tldp.org/HOWTO/mini/ppp-ssh/index.html
http://yavipin.sourceforge.net/

Security tools in Debian

Take into account that the encryption in ppptp forces you to store user passwords in clear text, and that the
MS-CHAPv2 protocol contains http://mopo.informatik.uni-freiburg.de/pptp_mschapv2/.

Public Key Infrastructure (PKI)
Public Key Infrastructure (PKI) is a security architecture introduced to provide an increased level of con-
fidence for exchanging information over insecure networks. It makes use of the concept of public and
private cryptographic keys to verify the identity of the sender (signing) and to ensure privacy (encryption).

When considering a PKI, you are confronted with a wide variety of issues:

• a Certificate Authority (CA) that can issue and verify certificates, and that can work under a given
hierarchy.

• a Directory to hold user's public certificates.

• a Database (?) to maintain Certificate Revocation Lists (CRL).

• devices that interoperate with the CA in order to print out smart cards/USB tokens/whatever to securely
store certificates.

• certificate-aware applications that can use certificates issued by a CA to enroll in encrypted communi-
cation and check given certificates against CRL (for authentication and full Single Sign On solutions).

• a Time stamping authority to digitally sign documents.

• a management console from which all of this can be properly used (certificate generation, revocation
list control, etc...).

Debian GNU/Linux has software packages to help you with some of these PKI issues. They include
OpenSSL (for certificate generation), OpenLDAP (as a directory to hold the certificates), gnupg and
openswan (with X.509 standard support). However, as of the Woody release (Debian 3.0), Debian does
not have any of the freely available Certificate Authorities such as pyCA, http://www.openca.org or the
CA samples from OpenSSL. For more information read the http://ospkibook.sourceforge.net/.

SSL Infrastructure
Debian does provide some SSL certificates with the distribution so that they can be installed locally. They
are found in the ca-certificates package. This package provides a central repository of certificates that
have been submitted to Debian and approved (that is, verified) by the package maintainer, useful for any
OpenSSL applications which verify SSL connections.

FIXME: read debian-devel to see if there was something added to this.

Antivirus tools
There are not many anti-virus tools included with Debian GNU/Linux, probably because GNU/Linux
users are not plagued by viruses. The Unix security model makes a distinction between privileged (root)
processes and user-owned processes, therefore a "hostile" executable that a non-root user receives or cre-
ates and then executes cannot "infect" or otherwise manipulate the whole system. However, GNU/Linux
worms and viruses do exist, although there has not (yet, hopefully) been any that has spread in the wild
over any Debian distribution. In any case, administrators might want to build up anti-virus gateways that
protect against viruses arising on other, more vulnerable systems in their network.

105

http://mopo.informatik.uni-freiburg.de/pptp_mschapv2/
http://www.openca.org
http://ospkibook.sourceforge.net/

Security tools in Debian

Debian GNU/Linux currently provides the following tools for building antivirus environments:

• http://www.clamav.net, provided since Debian sarge (3.1 release). Packages are provided both for the
virus scanner (clamav) for the scanner daemon (clamav-daemon) and for the data files needed for the
scanner. Since keeping an antivirus up-to-date is critical for it to work properly there are two different
ways to get this data: clamav-freshclam provides a way to update the database through the Internet
automatically and clamav-data which provides the data files directly. 2

• mailscanner an e-mail gateway virus scanner and spam detector. Using sendmail or exim as its basis, it
can use more than 17 different virus scanning engines (including clamav).

• libfile-scan-perl which provides File::Scan, a Perl extension for scanning files for viruses. This modules
can be used to make platform independent virus scanners.

• http://www.sourceforge.net/projects/amavis, provided in the package amavis-ng and available in sarge,
which is a mail virus scanner which integrates with different MTA (Exim, Sendmail, Postfix, or Qmail)
and supports over 15 virus scanning engines (including clamav, File::Scan and openantivirus).

• http://packages.debian.org/sanitizer, a tool that uses the procmail package, which can scan email attach-
ments for viruses, block attachments based on their filenames, and more.

• http://packages.debian.org/amavis-postfix, a script that provides an interface from a mail transport agent
to one or more commercial virus scanners (this package is built with support for the postfix MTA only).

• exiscan, an e-mail virus scanner written in Perl that works with Exim.

• blackhole-qmail a spam filter for Qmail with built-in support for Clamav.

Some gateway daemons support already tools extensions to build antivirus environments including ex-
im4-daemon-heavy (the heavy version of the Exim MTA), frox (a transparent caching ftp proxy server),
messagewall (an SMTP proxy daemon) and pop3vscan (a transparent POP3 proxy).

Debian currently provide clamav as the only antivirus scanning software in the main official distribution
and it also provides multiple interfaces to build gateways with antivirus capabilities for different protocols.

Some other free software antivirus projects which might be included in future Debian GNU/Linux releas-
es:http://sourceforge.net/projects/openantivirus/ (see http://bugs.debian.org/150698 and http://bugs.de-
bian.org/150695).

FIXME: Is there a package that provides a script to download the latest virus signatures from http://
www.openantivirus.org/latest.php?

FIXME: Check if scannerdaemon is the same as the open antivirus scanner daemon (read ITPs).

However, Debian will never provide propietary (non-free and undistributable) antivirus software such as:
Panda Antivirus, NAI Netshield, http://www.sophos.com/, http://www.antivirus.com, or http://www.ra-
vantivirus.com. For more pointers see the http://www.computer-networking.de/~link/security/av-lin-
ux_e.txt. This does not mean that this software cannot be installed properly in a Debian system3.

2 If you use this last package and are running an official Debian, the database will not be updated with security updates. You should either use
clamav-freshclam, clamav-getfiles to generate new clamav-data packages or update from the maintainers location:

 deb http://people.debian.org/~zugschlus/clamav-data/ /
 deb-src http://people.debian.org/~zugschlus/clamav-data/ /
3 Actually, there is an installer package for the F-prot antivirus, which is non-free but gratis for home users, called f-prot-installer. This installer,
however, just downloads http://www.f-prot.com/products/home_use/linux/ and installs it in the system.

106

http://www.clamav.net
http://www.sourceforge.net/projects/amavis
http://packages.debian.org/sanitizer
http://packages.debian.org/amavis-postfix
http://sourceforge.net/projects/openantivirus/
http://bugs.debian.org/150698
http://bugs.debian.org/150695
http://bugs.debian.org/150695
http://www.openantivirus.org/latest.php
http://www.openantivirus.org/latest.php
http://www.sophos.com/
http://www.antivirus.com
http://www.ravantivirus.com
http://www.ravantivirus.com
http://www.computer-networking.de/~link/security/av-linux_e.txt
http://www.computer-networking.de/~link/security/av-linux_e.txt
http://www.f-prot.com/products/home_use/linux/

Security tools in Debian

For more information on how to set up a virus detection system read Dave Jones' article https://we-
b.archive.org/web/20120509212938/http://www.linuxjournal.com/article/4882.

GPG agent
It is very common nowadays to digitally sign (and sometimes encrypt) e-mail. You might, for example,
find that many people participating on mailing lists sign their list e-mail. Public key signatures are currently
the only means to verify that an e-mail was sent by the sender and not by some other person.

Debian GNU/Linux provides a number of e-mail clients with built-in e-mail signing capabilities that in-
teroperate either with gnupg or pgp:

• evolution.

• mutt.

• kmail.

• icedove (rebranded version of Mozilla's Thunderbird) through the http://enigmail.mozdev.org/ plugin.
This plugin is provided by the enigmail package.

• sylpheed. Depending on how the stable version of this package evolves, you may need to use the bleeding
edge version, sylpheed-claws.

• gnus, which when installed with the mailcrypt package, is an emacs interface to gnupg.

• kuvert, which provides this functionality independently of your chosen mail user agent (MUA) by in-
teracting with the mail transport agent (MTA).

Key servers allow you to download published public keys so that you may verify signatures. One such key
server is http://wwwkeys.pgp.net. gnupg can automatically fetch public keys that are not already in your
public keyring. For example, to configure gnupg to use the above key server, edit the file ~/.gnupg/
options and add the following line: 4

keyserver wwwkeys.pgp.net

Most key servers are linked, so that when your public key is added to one server, the addition is propagated
to all the other public key servers. There is also a Debian GNU/Linux package debian-keyring, that pro-
vides all the public keys of the Debian developers. The gnupg keyrings are installed in /usr/share/
keyrings/.

For more information:

• http://www.gnupg.org/faq.html.

• http://www.gnupg.org/gph/en/manual.html.

• https://web.archive.org/web/20080201103530/http://
www.dewinter.com/gnupg_howto/english/GPGMiniHowto.html.

• https://web.archive.org/web/20080513095235/http://www.uk.pgp.net/pgpnet/pgp-faq/.

• https://web.archive.org/web/20060222110131/http://www.cryptnet.net/fdp/crypto/gpg-party.html.

4 For more examples of how to configure gnupg check /usr/share/doc/mutt/examples/gpg.rc.

107

https://web.archive.org/web/20120509212938/http://www.linuxjournal.com/article/4882
https://web.archive.org/web/20120509212938/http://www.linuxjournal.com/article/4882
http://enigmail.mozdev.org/
http://wwwkeys.pgp.net
http://www.gnupg.org/faq.html
http://www.gnupg.org/gph/en/manual.html
https://web.archive.org/web/20080201103530/http://www.dewinter.com/gnupg_howto/english/GPGMiniHowto.html
https://web.archive.org/web/20080201103530/http://www.dewinter.com/gnupg_howto/english/GPGMiniHowto.html
https://web.archive.org/web/20080513095235/http://www.uk.pgp.net/pgpnet/pgp-faq/
https://web.archive.org/web/20060222110131/http://www.cryptnet.net/fdp/crypto/gpg-party.html

Chapter 9. Developer's Best Practices
for OS Security

This chapter introduces some best secure coding practices for developers writing Debian packages. If
you are really interested in secure coding I recommend you read David Wheeler's http://www.dwheel-
er.com/secure-programs/ and http://www.securecoding.org by Mark G. Graff and Kenneth R. van Wyk
(O'Reilly, 2003).

Best practices for security review and design
Developers that are packaging software should make a best effort to ensure that the installation of the
software, or its use, does not introduce security risks to either the system it is installed on or its users.

In order to do so, they should make their best to review the source code of the package and detect any
flaws that might introduce security bugs before releasing the software or distributing a new version. It is
acknowledged that the cost of fixing bugs grows for different stages of its development, so it is easier (and
cheaper) to fix bugs when designing than when the software has been deployed and is in maintenance mode
(some studies say that the cost in this later phase is sixty times higher). Although there are some tools that
try to automatically detect these flaws, developers should strive to learn about the different kind of security
flaws in order to understand them and be able to spot them in the code they (or others) have written.

The programming bugs which lead to security bugs typically include: http://en.wikipedia.org/wi-
ki/Buffer_overflow, format string overflows, heap overflows and integer overflows (in C/C++ programs),
temporary http://en.wikipedia.org/wiki/Symlink_race (in scripts), http://en.wikipedia.org/wiki/Directo-
ry_traversal and command injection (in servers) and http://en.wikipedia.org/wiki/Cross_site_scripting,
and http://en.wikipedia.org/wiki/SQL_injection (in the case of web-oriented applications). For a more
complete information on security bugs review Fortify's http://vulncat.fortifysoftware.com/.

Some of these issues might not be easy to spot unless you are an expert in the programming language
the software uses, but some security problems are easy to detect and fix. For example, finding temporary
race conditions due to misuse of temporary directories can easily be done just by running grep -r "/
tmp/" .. Those calls can be reviewed and replace the hardcoded filenames using temporary directories
to calls to either mktemp or tempfile in shell scripts, File::Temp(3perl) in Perl scripts, or tmpfile(3) in
C/C++.

There are a set of tools available to assist to the security code review phase. These include rats, flawfinder
and pscan. For more information, read the http://www.debian.org/security/audit/tools.

When packaging software developers have to make sure that they follow common security principles,
including:

• The software runs with the minimum privileges it needs:

• The package does install binaries setuid or setgid. Lintian will warn of http://lintian.debian.org/re-
ports/Tsetuid-binary.html, http://lintian.debian.org/reports/Tsetgid-binary.html and http://lintian.de-
bian.org/reports/Tsetuid-gid-binary.html binaries.

• The daemons the package provide run with a low privilege user (see the section called “Creating
users and groups for software daemons”)

• Programmed (i.e., cron) tasks running in the system do NOT run as root or, if they do, do not implement
complex tasks.

108

http://www.dwheeler.com/secure-programs/
http://www.dwheeler.com/secure-programs/
http://www.securecoding.org
http://en.wikipedia.org/wiki/Buffer_overflow
http://en.wikipedia.org/wiki/Buffer_overflow
http://en.wikipedia.org/wiki/Symlink_race
http://en.wikipedia.org/wiki/Directory_traversal
http://en.wikipedia.org/wiki/Directory_traversal
http://en.wikipedia.org/wiki/Cross_site_scripting
http://en.wikipedia.org/wiki/SQL_injection
http://vulncat.fortifysoftware.com/
http://www.debian.org/security/audit/tools
http://lintian.debian.org/reports/Tsetuid-binary.html
http://lintian.debian.org/reports/Tsetuid-binary.html
http://lintian.debian.org/reports/Tsetgid-binary.html
http://lintian.debian.org/reports/Tsetuid-gid-binary.html
http://lintian.debian.org/reports/Tsetuid-gid-binary.html

Developer's Best Prac-
tices for OS Security

If you have to do any of the above make sure the programs that might run with higher privileges have
been audited for security bugs. If you are unsure, or need help, contact the http://www.debian.org/securi-
ty/audit/. In the case of setuid/setgid binaries, follow the Debian policy section regarding http://www.de-
bian.org/doc/debian-policy/ch-files.html#s10.9

For more information, specific to secure programming, make sure you read (or point your upstream to)
http://www.dwheeler.com/secure-programs/ and the https://buildsecurityin.us-cert.gov/portal/ portal.

Creating users and groups for software dae-
mons

If your software runs a daemon that does not need root privileges, you need to create a user for it. There
are two kind of Debian users that can be used by packages: static uids (assigned by base-passwd, for a list
of static users in Debian see the section called “Operating system users and groups”) and dynamic uids
in the range assigned to system users.

In the first case, you need to ask for a user or group id to the base-passwd. Once the user is available there
the package needs to be distributed including a proper versioned depends to the base-passwd package.

In the second case, you need to create the system user either in the preinst or in the postinst and make the
package depend on adduser (>= 3.11).

The following example code creates the user and group the daemon will run as when the package is installed
or upgraded:

[...]
case "$1" in
 install|upgrade)

 # If the package has default file it could be sourced, so that
 # the local admin can overwrite the defaults

 [-f "/etc/default/packagename"] && . /etc/default/packagename

 # Sane defaults:

 [-z "$SERVER_HOME"] && SERVER_HOME=server_dir
 [-z "$SERVER_USER"] && SERVER_USER=server_user
 [-z "$SERVER_NAME"] && SERVER_NAME="Server description"
 [-z "$SERVER_GROUP"] && SERVER_GROUP=server_group

 # Groups that the user will be added to, if undefined, then none.
 ADDGROUP=""

 # create user to avoid running server as root
 # 1. create group if not existing
 if ! getent group | grep -q "^$SERVER_GROUP:" ; then
 echo -n "Adding group $SERVER_GROUP.."
 addgroup --quiet --system $SERVER_GROUP 2>/dev/null ||true
 echo "..done"
 fi
 # 2. create homedir if not existing

109

http://www.debian.org/security/audit/
http://www.debian.org/security/audit/
http://www.debian.org/doc/debian-policy/ch-files.html#s10.9
http://www.debian.org/doc/debian-policy/ch-files.html#s10.9
http://www.dwheeler.com/secure-programs/
https://buildsecurityin.us-cert.gov/portal/

Developer's Best Prac-
tices for OS Security

 test -d $SERVER_HOME || mkdir $SERVER_HOME
 # 3. create user if not existing
 if ! getent passwd | grep -q "^$SERVER_USER:"; then
 echo -n "Adding system user $SERVER_USER.."
 adduser --quiet \
 --system \
 --ingroup $SERVER_GROUP \
 --no-create-home \
 --disabled-password \
 $SERVER_USER 2>/dev/null || true
 echo "..done"
 fi
 # 4. adjust passwd entry
 usermod -c "$SERVER_NAME" \
 -d $SERVER_HOME \
 -g $SERVER_GROUP \
 $SERVER_USER
 # 5. adjust file and directory permissions
 if ! dpkg-statoverride --list $SERVER_HOME >/dev/null
 then
 chown -R $SERVER_USER:adm $SERVER_HOME
 chmod u=rwx,g=rxs,o= $SERVER_HOME
 fi
 # 6. Add the user to the ADDGROUP group
 if test -n $ADDGROUP
 then
 if ! groups $SERVER_USER | cut -d: -f2 | \
 grep -qw $ADDGROUP; then
 adduser $SERVER_USER $ADDGROUP
 fi
 fi
 ;;
 configure)

[...]

You have to make sure that the init.d script file:

• Starts the daemon dropping privileges: if the software does not do the setuid(2) or seteuid(2) call itself,
you can use the --chuid call of start-stop-daemon.

• Stops the daemon only if the user id matches, you can use the start-stop-daemon --user option for
this.

• Does not run if either the user or the group do not exist:

 if ! getent passwd | grep -q "^server_user:"; then
 echo "Server user does not exist. Aborting" >&2
 exit 1
 fi
 if ! getent group | grep -q "^server_group:" ; then
 echo "Server group does not exist. Aborting" >&2
 exit 1
 fi

110

Developer's Best Prac-
tices for OS Security

If the package creates the system user it can remove it when it is purged in its postrm. This has some
drawbacks, however. For example, files created by it will be orphaned and might be taken over by a new
system user in the future if it is assigned the same uid1. Consequently, removing system users on purge
is not yet mandatory and depends on the package needs. If unsure, this action could be handled by asking
the administrator for the prefered action when the package is installed (i.e. through debconf).

Maintainers that want to remove users in their postrm scripts are referred to the deluser/deluser --sys-
tem option.

Running programs with a user with limited privileges makes sure that any security issue will not be
able to damage the full system. It also follows the principle of least privilege. Also consider you can
limit privileges in programs through other mechanisms besides running as non-root2. For more infor-
mation, read the http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/minimize-privi-
leges.html chapter of the Secure Programming for Linux and Unix HOWTO book.

1 Some relevant threads discussing these drawbacks include http://lists.debian.org/debian-mentors/2004/10/msg00338.html and http://lists.de-
bian.org/debian-devel/2004/05/msg01156.html
2 You can even provide a SELinux policy for it

111

http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/minimize-privileges.html
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/minimize-privileges.html
http://lists.debian.org/debian-mentors/2004/10/msg00338.html
http://lists.debian.org/debian-devel/2004/05/msg01156.html
http://lists.debian.org/debian-devel/2004/05/msg01156.html

Chapter 10. Before the compromise
Keep your system secure

You should strive to keep your system secure by monitoring its usage and also the vulnerabilities that
might affect it, patching them as soon as patches are available. Even though you might have installed a
really secure system initially you have to remember that security in a system degrades with time, security
vulnerabilities might be found for exposed system services and users might expose the system security
either because of lack of understanding (e.g. accessing a system remotely with a clear-text protocol or
using easy to guess passwords) or because they are actively trying to subvert the system's security (e.g.
install additional services locally on their accounts).

Tracking security vulnerabilities
Although most administrators are aware of security vulnerabilities affecting their systems when they see
a patch that is made available you can strive to keep ahead of attacks and introduce temporary counter-
measures for security vulnerabilities by detecting when your system is vulnerable. This is specially true
when running an exposed system (i.e. connected to the Internet) and providing a service. In such case the
system's administrators should take care to monitor known information sources to be the first to know
when a vulnerability is detected that might affect a critical service.

This typically includes subscribing to the announcement mailing lists, project websites or bug tracking
systems provided by the software developers for a specific piece of code. For example, Apache users
should regularly review Apache's http://httpd.apache.org/security_report.html and subscribe to the http://
httpd.apache.org/lists.html#http-announce mailing list.

In order to track known vulnerabilities affecting the Debian distribution, the Debian Testing Security
Team provides a https://security-tracker.debian.org/ that lists all the known vulnerabilities which have
not been yet fixed in Debian packages. The information in that tracker is obtained through different
public channels and includes known vulnerabilities which are available either through security vul-
nerability databases or http://www.debian.org/Bugs/. Administrators can search for the known securi-
ty issues being tracked for https://security-tracker.debian.org/tracker/status/release/stable, https://securi-
ty-tracker.debian.org/tracker/status/release/oldstable, https://security-tracker.debian.org/tracker/status/re-
lease/testing, or https://security-tracker.debian.org/tracker/status/release/unstable.

The tracker has searchable interfaces (by http://cve.mitre.org/ name and package name) and some tools
(such as debsecan, see the section called “Automatically checking for security issues with debsecan”) use
that database to provide information of vulnerabilities affecting a given system which have not yet been
addressed (i.e. those who are pending a fix).

Concious administrators can use that information to determine which security bugs might affect the system
they are managing, determine the severity of the bug and apply (if available) temporary countermeasures
before a patch is available fixing this issue.

Security issues tracked for releases supported by the Debian Security Team should eventually be handled
through Debian Security Advisories (DSA) and will be available for all users (see the section called “Con-
tinuously update the system”). Once security issues are fixed through an advisory they will not be avail-
able in the tracker, but you will be able to search security vulnerabilities (by CVE name) using the http://
www.debian.org/security/crossreferences available for published DSAs.

Notice, however, that the information tracked by the Debian Testing Security Team only involves dis-
closed vulnerabilities (i.e. those already public). In some occasions the Debian Security Team might be

112

http://httpd.apache.org/security_report.html
http://httpd.apache.org/lists.html#http-announce
http://httpd.apache.org/lists.html#http-announce
https://security-tracker.debian.org/
http://www.debian.org/Bugs/
https://security-tracker.debian.org/tracker/status/release/stable
https://security-tracker.debian.org/tracker/status/release/oldstable
https://security-tracker.debian.org/tracker/status/release/oldstable
https://security-tracker.debian.org/tracker/status/release/testing
https://security-tracker.debian.org/tracker/status/release/testing
https://security-tracker.debian.org/tracker/status/release/unstable
http://cve.mitre.org/
http://www.debian.org/security/crossreferences
http://www.debian.org/security/crossreferences

Before the compromise

handling and preparing DSAs for packages based on undisclosed information provided to them (for ex-
ample, through closed vendor mailing lists or by upstream maintainers of software). So do not be surprised
to find security issues that only show up as an advisory but never get to show up in the security tracker.

Continuously update the system

You should conduct security updates frequently. The vast majority of exploits result from known vulner-
abilities that have not been patched in time, as this http://www.cs.umd.edu/~waa/vulnerability.html (pre-
sented at the 2001 IEEE Symposium on Security and Privacy) explains. Updates are described under the
section called “Execute a security update”.

Manually checking which security updates are available

Debian does have a specific tool to check if a system needs to be updated but many users will just want
to manually check if any security updates are available for their system.

If you have configured your system as described in the section called “Execute a security update” you
just need to do:

apt-get update
apt-get upgrade -s
[... review packages to be upgraded ...]
apt-get upgrade
checkrestart
[... restart services that need to be restarted ...]

And restart those services whose libraries have been updated if any. Note: Read the section called “Execute
a security update” for more information on library (and kernel) upgrades.

The first line will download the list of packages available from your configured package sources. The -
s will do a simulation run, that is, it will not download or install the packages but rather tell you which
ones should be downloaded/installed. From the output you can derive which packages have been fixed by
Debian and are available as a security update. Sample:

apt-get upgrade -s
Reading Package Lists... Done
Building Dependency Tree... Done
2 packages upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
Inst cvs (1.11.1p1debian-8.1 Debian-Security:3.0/stable)
Inst libcupsys2 (1.1.14-4.4 Debian-Security:3.0/stable)
Conf cvs (1.11.1p1debian-8.1 Debian-Security:3.0/stable)
Conf libcupsys2 (1.1.14-4.4 Debian-Security:3.0/stable)

In this example, you can see that the system needs to be updated with new cvs and cupsys packages which
are being retrieved from woody's security update archive. If you want to understand why these packages
are needed, you should go to http://security.debian.org and check which recent Debian Security Advi-
sories have been published related to these packages. In this case, the related DSAs are https://lists.de-
bian.org/debian-security-announce/2003/msg00014.html (for cvs) and https://lists.debian.org/debian-se-
curity-announce/2003/msg00013.html (for cupsys).

Notice that you will need to reboot your system if there has been a kernel upgrade.

113

http://www.cs.umd.edu/~waa/vulnerability.html
http://security.debian.org
https://lists.debian.org/debian-security-announce/2003/msg00014.html
https://lists.debian.org/debian-security-announce/2003/msg00014.html
https://lists.debian.org/debian-security-announce/2003/msg00013.html
https://lists.debian.org/debian-security-announce/2003/msg00013.html

Before the compromise

Checking for updates at the Desktop

Since Debian 4.0 lenny Debian provides and installs in a default installation update-notifier. This is a
GNOME application that will startup when you enter your Desktop and can be used to keep track of
updates available for your system and install them. It uses update-manager for this.

In a stable system updates are only available when a security patch is available or at point releases. Con-
sequently, if the system is properly configured to receive security updates as described in the section called
“Execute a security update” and you have a cron task running to update the package information you will
be notified through an icon in the desktop notifcation area.

The notification is not intrusive and users are not forced to install updates. From the notification icon a
desktop user (with the administrator's password) can access a simple GUI to show available updates and
install them.

This application works by checking the package database and comparing the system with its contents. If
the package database is updated periodically through a cron task then the contents of the database will be
newer than the packages installed in the system and the application will notify you.

Apt installs such a task (/etc/cron.d/apt) which will run based on Apt's configuration (more specif-
ically APT::Periodic). In the GNOME environment this configuration value can be adjusted by going to
System > Admin > Software origins > Updates, or running /usr/bin/software-properties.

If the system is set to download the packages list daily but not download the packages themselves your /
etc/apt/apt.conf.d/10periodic should look like this:

APT::Periodic::Update-Package-Lists "1";
APT::Periodic::Download-Upgradeable-Packages "0";

You can use a different cron task, such as the one installed by cron-apt (see the section called “Automat-
ically checking for updates with cron-apt”). You can also just manually check for upgrades using this
application.

Users of the KDE desktop environment will probably prefer to install adept and adept-notifier instead
which offers a similar functionality but is not part of the standard installation.

Automatically checking for updates with cron-apt

Another method for automatic security updates is the use of cron-apt. This package provides a tool to
update the system at regular intervals (using a cron job), and can also be configured to send mails to the
system administrator using the local mail transport agent. It will just update the package list and download
new packages by default but it can be configured to automatically install new updates.

Notice that you might want to check the distribution release, as described in the section called “Per distri-
bution release check”, if you intend to automatically updated your system (even if only downloading the
packages). Otherwise, you cannot be sure that the downloaded packages really come from a trusted source.

More information is available at the http://www.debian-administration.org/articles/162.

Automatically checking for security issues with debsecan

The debsecan program evaluates the security status of by reporting both missing security updates and se-
curity vulnerabilities. Unlike cron-apt, which only provides information related to security updates avail-
able, but this tool obtains information from the security vulnerability database maintained by the Debian
Security Team which includes also information on vulnerabilities which are not yet fixed through a secu-

114

http://www.debian-administration.org/articles/162

Before the compromise

rity update. Consequently, it is more efficient at helping administrators track security vulnerabilities (as
described in the section called “Tracking security vulnerabilities”).

Upon installing the Debian package debsecan, and if the administrator consents to it, it will generate a cron
task that will make it run and send the output to a specific user whenever it finds a vulnerable package.
It will also download the information from the Internet. The location of the security database is also part
of the questions ask on installation and are later defined /etc/default/debsecan, it can be easily
adjusted for systems that do not have Internet access so that they all pull from a local mirror so that there
is a single point that access the vulnerability database.

Notice, however, that the Security Team tracks many vulnerabilities including low-risk issues which might
not be fixed through a security update and some vulnerabilities initially reported as affecting Debian might,
later on, upon investigation, be dismissed. Debsecan will report on all the vulnerabilities, which makes it
a quite more verbose than the other tools described above.

More information is available at the http://www.enyo.de/fw/software/debsecan/.

Other methods for security updates

There is also the apticron, which, similarly to cron-apt will check for updates and send mails to the adminis-
trator. More information on apticron is available at the http://www.debian-administration.org/articles/491.

You might also want to take a look at http://clemens.endorphin.org/secpack/ which is an unofficial program
to do security updates from security.debian.org with signature checking written by Fruhwirth Clemens.
Or to the Nagios Plugin http://www.unixdaemon.net/nagios_plugins.html#check_debian_packages writ-
ten by Dean Wilson.

Avoid using the unstable branch
Unless you want to dedicate time to patch packages yourself when a vulnerability arises, you should not
use Debian's unstable branch for production-level systems. The main reason for this is that there are no
security updates for unstable.

The fact is that some security issues might appear in unstable and not in the stable distribution. This is due
to new functionality constantly being added to the applications provided there, as well as new applications
being included which might not yet have been thoroughly tested.

In order to do security upgrades in the unstable branch, you might have to do full upgrades to new ver-
sions (which might update much more than just the affected package). Although there have been some
exceptions, security patches are usually only back ported into the stable branch. The main idea being that
between updates, no new code should be added, just fixes for important issues.

Notice, however, that you can use the security tracker (as described in the section called “Tracking security
vulnerabilities”) to track known security vulnerabilities affecting this branch.

Security support for the testing branch
If you are using the testing branch, there are some issues that you must take into account regarding the
availability of security updates:

• When a security fix is prepared, the Security Team backports the patch to stable (since stable is usually
some minor or major versions behind). Package maintainers are responsible for preparing packages for
the unstable branch, usually based on a new upstream release. Sometimes the changes happen at nearly
the same time and sometimes one of the releases gets the security fix before. Packages for the stable
distribution are more thoroughly tested than unstable, since the latter will in most cases provide the
latest upstream release (which might include new, unknown bugs).

115

http://www.enyo.de/fw/software/debsecan/
http://www.debian-administration.org/articles/491
http://clemens.endorphin.org/secpack/
http://www.unixdaemon.net/nagios_plugins.html#check_debian_packages

Before the compromise

• Security updates are available for the unstable branch usually when the package maintainer makes a
new package and for the stable branch when the Security Team make a new upload and publish a DSA.
Notice that neither of these change the testing branch.

• If no (new) bugs are detected in the unstable version of the package, it moves to testing after several
days. The time this takes is usually ten days, although that depends on the upload priority of the change
and whether the package is blocked from entering testing by its dependency relationships. Note that if
the package is blocked from entering testing the upload priority will not change the time it takes to enter.

This behavior might change based on the release state of the distribution. When a release is almost immi-
nent, the Security Team or package maintainers might provide updates directly to testing.

Additionally, the http://secure-testing-master.debian.net can issue Debian Testing Security Advisories
(DTSAs) for packages in the testing branch if there is an immediate need to fix a security issue in that
branch and cannot wait for the normal procedure (or the normal procedure is being blocked by some other
packages).

Users willing to take advantage of this support should add the following lines to their /etc/apt/
sources.list (instead of the lines described in the section called “Execute a security update”):

 deb http://security.debian.org testing/updates main contrib non-free
This line makes it possible to donwload source packages too
 deb-src http://security.debian.org testing/updates main contrib non-free

For additional information on this support please read the http://lists.debian.org/debian-devel-an-
nounce/2006/05/msg00006.html. This support officially started in http://lists.debian.org/debian-devel-an-
nounce/2005/09/msg00006.html in a separate repository and was later integrated into the main security
archive.

Automatic updates in a Debian GNU/Linux system
First of all, automatic updates are not fully recommended, since administrators should review the DSAs
and understand the impact of any given security update.

If you want to update your system automatically you should:

• Configure apt so that those packages that you do not want to update stay at their current version, either
with apt's pinning feature or marking them as hold with aptitude or dpkg.

To pin the packages under a given release, you must edit /etc/apt/preferences (see apt_pref-
erences(5)) and add:

 Package: *
 Pin: release a=stable
 Pin-Priority: 100

FIXME: verify if this configuration is OK.

• Either use cron-apt as described in the section called “Automatically checking for updates with cron-
apt” and enable it to install downloaded packages or add a cron entry yourself so that the update is run
daily, for example:

116

http://secure-testing-master.debian.net
http://lists.debian.org/debian-devel-announce/2006/05/msg00006.html
http://lists.debian.org/debian-devel-announce/2006/05/msg00006.html
http://lists.debian.org/debian-devel-announce/2005/09/msg00006.html
http://lists.debian.org/debian-devel-announce/2005/09/msg00006.html

Before the compromise

 apt-get update && apt-get -y upgrade

The -y option will have apt assume 'yes' for all the prompts that might arise during the update. In
some cases, you might want to use the --trivial-only option instead of the --assume-yes
(equivalent to -y).1

• Configure debconf so no questions will be asked during upgrades, so that they can be done non-inter-
actively. 2

• Check the results of the cron execution, which will be mailed to the superuser (unless changed with
MAILTO environment variable in the script).

A safer alternative might be to use the -d (or --download-only) option, which will download but
not install the necessary packages. Then if the cron execution shows that the system needs to be updated,
it can be done manually.

In order to accomplish any of these tasks, the system must be properly configured to download security
updates as discussed in the section called “Execute a security update”.

However, this is not recommended for unstable without careful analysis, since you might bring your system
into an unusable state if some serious bug creeps into an important package and gets installed in your
system. Testing is slightly more secure with regard to this issue, since serious bugs have a better chance of
being detected before the package is moved into the testing branch (although, you may have no security
updates available whatsoever).

If you have a mixed distribution, that is, a stable installation with some packages updated to testing or
unstable, you can fiddle with the pinning preferences as well as the --target-release option in apt-
get to update only those packages that you have updated.3

Do periodic integrity checks
Based on the baseline information you generated after installation (i.e. the snapshot described in the section
called “Taking a snapshot of the system”), you should be able to do an integrity check from time to time.
An integrity check will be able to detect filesystem modifications made by an intruder or due to a system
administrators mistake.

Integrity checks should be, if possible, done offline.4 That is, without using the operating system of the
system to review, in order to avoid a false sense of security (i.e. false negatives) produced by, for example,
installed rootkits. The integrity database that the system is checked against should also be used from read-
only media.

You can consider doing integrity checks online using any of the filesystem integrity tools available (de-
scribed in the section called “Checking file system integrity”) if taking offline the system is not an option.
However, precaution should be taken to use a read-only integrity database and also assure that the integrity
checking tool (and the operating system kernel) has not been tampered with.

Some of the tools mentioned in the integrity tools section, such as aide, integrit or samhain are already
prepared to do periodic reviews (through the crontab in the first two cases and through a standalone daemon

1 You may also want to use the --quiet (-q) option to reduce the output of apt-get, which will stop the generation of any output if no packages
are installed.
2 Note that some packages might not use debconf and updates will stall due to packages asking for user input during configuration.
3 This is a common issue since many users want to maintain a stable system while updating some packages to unstable to gain the latest functionality.
This need arises due to some projects evolving faster than the time between Debian's stable releases.
4 An easy way to do this is using a Live CD, such as http://www.knoppix-std.org/ which includes both the file integrity tools and the integrity
database for your system.

117

http://www.knoppix-std.org/

Before the compromise

in samhain) and can warn the administrator through different channels (usually e-mail, but samhain can
also send pages, SNMP traps or syslog alerts) when the filesystem changes.

Of course, if you execute a security update of the system, the snapshot taken for the system should be re-
taken to accommodate the changes done by the security update.

Set up Intrusion Detection
Debian GNU/Linux includes tools for intrusion detection, which is the practice of detecting inappropriate
or malicious activity on your local system, or other systems in your private network. This kind of defense is
important if the system is very critical or you are truly paranoid. The most common approaches to intrusion
detection are statistical anomaly detection and pattern-matching detection.

Always be aware that in order to really improve the system's security with the introduction of any of these
tools, you need to have an alert+response mechanism in place. Intrusion detection is a waste of time if
you are not going to alert anyone.

When a particular attack has been detected, most intrusion detection tools will either log the event with
syslogd or send e-mail to the root user (the mail recipient is usually configurable). An administrator has
to properly configure the tools so that false positives do not trigger alerts. Alerts may also indicate an
ongoing attack and might not be useful, say, one day later, since the attack might have already succeeded.
So be sure that there is a proper policy on handling alerts and that the technical mechanisms to implement
this policy are in place.

An interesting source of information is http://www.cert.org/tech_tips/intruder_detection_checklist.html

Network based intrusion detection
Network based intrusion detection tools monitor the traffic on a network segment and use this information
as a data source. Specifically, the packets on the network are examined, and they are checked to see if
they match a certain signature.

snort is a flexible packet sniffer or logger that detects attacks using an attack signature dictionary. It detects
a variety of attacks and probes, such as buffer overflows, stealth port scans, CGI attacks, SMB probes, and
much more. snort also has real-time alerting capability. You can use snort for a range of hosts on your
network as well as for your own host. This is a tool which should be installed on every router to keep an
eye on your network. Just install it with apt-get install snort, follow the questions, and watch
it log. For a little broader security framework, see http://www.prelude-ids.org.

Debian's snort package has many security checks enabled by default. However, you should customize the
setup to take into account the particular services you run on your system. You may also want to seek
additional checks specific to these services.

There are other, simpler tools that can be used to detect network attacks. portsentry is an interesting package
that can tip you off to port scans against your hosts. Other tools like ippl or iplogger will also detect some
IP (TCP and ICMP) attacks, even if they do not provide the kind of advanced techniques snort does.

You can test any of these tools with the Debian package idswakeup, a shell script which generates false
alarms, and includes many common attack signatures.

Host based intrusion detection
Host based intrusion detection involves loading software on the system to be monitored which uses log
files and/or the systems auditing programs as a data source. It looks for suspicious processes, monitors
host access, and may even monitor changes to critical system files.

118

http://www.cert.org/tech_tips/intruder_detection_checklist.html
http://www.prelude-ids.org

Before the compromise

tiger is an older intrusion detection tool which has been ported to Debian since the Woody branch. tiger
provides checks of common issues related to security break-ins, like password strength, file system prob-
lems, communicating processes, and other ways root might be compromised. This package includes new
Debian-specific security checks including: MD5sums checks of installed files, locations of files not be-
longing to packages, and analysis of local listening processes. The default installation sets up tiger to run
each day, generating a report that is sent to the superuser about possible compromises of the system.

Log analysis tools, such as logcheck can also be used to detect intrusion attempts. See the section called
“Using and customizing logcheck”.

In addition, packages which monitor file system integrity (see the section called “Checking file system
integrity”) can be quite useful in detecting anomalies in a secured environment. It is most likely that an
effective intrusion will modify some files in the local file system in order to circumvent local security
policy, install Trojans, or create users. Such events can be detected with file system integrity checkers.

Avoiding root-kits

Loadable Kernel Modules (LKM)
Loadable kernel modules are files containing dynamically loadable kernel components used to expand
the functionality of the kernel. The main benefit of using modules is the ability to add additional devices,
like an Ethernet or sound card, without patching the kernel source and recompiling the entire kernel.
However, crackers are now using LKMs for root-kits (knark and adore), opening up back doors in GNU/
Linux systems.

LKM back doors are more sophisticated and less detectable than traditional root-kits. They can hide
processes, files, directories and even connections without modifying the source code of binaries. For ex-
ample, a malicious LKM can force the kernel into hiding specific processes from procfs, so that even
a known good copy of the binary ps would not list accurate information about the current processes on
the system.

Detecting root-kits
There are two approaches to defending your system against LKM root-kits, a proactive defense and a
reactive defense. The detection work can be simple and painless, or difficult and tiring, depending on the
approach taken.

Proactive defense

The advantage of this kind of defense is that it prevents damage to the system in the first place. One such
strategy is getting there first, that is, loading an LKM designed to protect the system from other malicious
LKMs. A second strategy is to remove capabilities from the kernel itself. For example, you can remove
the capability of loadable kernel modules entirely. Note, however, that there are rootkits which might
work even in this case, there are some that tamper with /dev/kmem (kernel memory) directly to make
themselves undetectable.

Debian GNU/Linux has a few packages that can be used to mount a proactive defense:

lcap - A user friendly interface to remove capabilities (kernel-based access control) in the kernel, making
the system more secure. For example, executing lcap CAP_SYS_MODULE5 will remove module loading

5 There are over 28 capabilities including: CAP_BSET, CAP_CHOWN, CAP_FOWNER, CAP_FSETID, CAP_FS_MASK, CAP_FUL-
L_SET, CAP_INIT_EFF_SET, CAP_INIT_INH_SET, CAP_IPC_LOCK, CAP_IPC_OWNER, CAP_KILL, CAP_LEASE, CAP_LINUX_IM-

119

Before the compromise

capabilities (even for the root user).6 There is some (old) information on capabilities at Jon Corbet's http://
lwn.net/1999/1202/kernel.php3 section on LWN (dated December 1999).

If you don't really need many kernel features on your GNU/Linux system, you may want to disable load-
able modules support during kernel configuration. To disable loadable module support, just set CON-
FIG_MODULES=n during the configuration stage of building your kernel, or in the .config file. This
will prevent LKM root-kits, but you lose this powerful feature of the Linux kernel. Also, disabling loadable
modules can sometimes overload the kernel, making loadable support necessary.

Reactive defense

The advantage of a reactive defense is that it does not overload system resources. It works by comparing
the system call table with a known clean copy in a disk file, System.map. Of course, a reactive defense
will only notify the system administrator after the system has already been compromised.

Detection of some root-kits in Debian can be accomplished with the chkrootkit package. The http://
www.chkrootkit.org program checks for signs of several known root-kits on the target system, but is not
a definitive test.

Genius/Paranoia Ideas - what you could do
This is probably the most unstable and funny section, since I hope that some of the "duh, that sounds
crazy" ideas might be realized. The following are just some ideas for increasing security - maybe genius,
paranoid, crazy or inspired depending on your point of view.

• Playing around with Pluggable Authentication Modules (PAM). As quoted in the Phrack 56 PAM article,
the nice thing about PAM is that "You are limited only by what you can think of." It is true. Imagine root
login only being possible with fingerprint or eye scan or cryptocard (why did I use an OR conjunction
instead of AND?).

• Fascist Logging. I would refer to all the previous logging discussion above as "soft logging". If you
want to perform real logging, get a printer with fanfold paper, and send all logs to it. Sounds funny, but
it's reliable and it cannot be tampered with or removed.

• CD distribution. This idea is very easy to realize and offers pretty good security. Create a hardened
Debian distribution, with proper firewall rules. Turn it into a boot-able ISO image, and burn it on a
CDROM. Now you have a read-only distribution, with about 600 MB space for services. Just make
sure all data that should get written is done over the network. It is impossible for intruders to get read/
write access on this system, and any changes an intruder does make can be disabled with a reboot of
the system.

• Switch module capability off. As discussed earlier, when you disable the usage of kernel modules at
kernel compile time, many kernel based back doors are impossible to implement because most are based
on installing modified kernel modules.

• Logging through serial cable (contributed by Gaby Schilders). As long as servers still have serial ports,
imagine having one dedicated logging system for a number of servers. The logging system is discon-
nected from the network, and connected to the servers via a serial-port multiplexer (Cyclades or the
like). Now have all your servers log to their serial ports, write only. The log-machine only accepts plain

MUTABLE, CAP_MKNOD, CAP_NET_ADMIN, CAP_NET_BIND_SERVICE, CAP_NET_RAW, CAP_SETGID, CAP_SETPCAP, CAP_SETUID,
CAP_SYS_ADMIN, CAP_SYS_BOOT, CAP_SYS_CHROOT, CAP_SYS_MODULE, CAP_SYS_NICE, CAP_SYS_PACCT, CAP_SYS_PTRACE,
CAP_SYS_RAWIO, CAP_SYS_RESOURCE, CAP_SYS_TIME, and CAP_SYS_TTY_CONFIG. All of them can be de-activated to harden your
kernel.
6 You don't need to install lcap to do this, but it's easier than setting /proc/sys/kernel/cap-bound by hand.

120

http://lwn.net/1999/1202/kernel.php3
http://lwn.net/1999/1202/kernel.php3
http://www.chkrootkit.org
http://www.chkrootkit.org

Before the compromise

text as input on its serial ports and only writes to a log file. Connect a CD/DVD-writer, and transfer
the log file to it when the log file reaches the capacity of the media. Now if only they would make CD
writers with auto-changers... Not as hard copy as direct logging to a printer, but this method can handle
larger volumes and CD-ROMs use less storage space.

• Change file attributes using chattr (taken from the Tips-HOWTO, written by Jim Dennis). After a clean
install and initial configuration, use the chattr program with the +i attribute to make files unmodifiable
(the file cannot be deleted, renamed, linked or written to). Consider setting this attribute on all the files
in /bin, /sbin/, /usr/bin, /usr/sbin, /usr/lib and the kernel files in root. You can also
make a copy of all files in /etc/, using tar or the like, and mark the archive as immutable.

This strategy will help limit the damage that you can do when logged in as root. You won't overwrite
files with a stray redirection operator, and you won't make the system unusable with a stray space in
a rm -fr command (you might still do plenty of damage to your data - but your libraries and binaries
will be safer).

This strategy also makes a variety of security and denial of service (DoS) exploits either impossible
or more difficult (since many of them rely on overwriting a file through the actions of some SETUID
program that isn't providing an arbitrary shell command).

One inconvenience of this strategy arises during building and installing various system binaries. On
the other hand, it prevents the make install from over-writing the files. When you forget to read the
Makefile and chattr -i the files that are to be overwritten, (and the directories to which you want to
add files) - the make command fails, and you just use the chattr command and rerun it. You can also
take that opportunity to move your old bin's and libs out of the way, into a .old/ directory or tar archive
for example.

Note that this strategy also prevents you from upgrading your system's packages, since the files updated
packages provide cannot be overwritten. You might want to have a script or other mechanism to disable
the immutable flag on all binaries right before doing an apt-get update.

• Play with UTP cabling in a way that you cut 2 or 4 wires and make the cable one-way traffic only. Then
use UDP packets to send information to the destination machine which can act as a secure log server
or a credit card storage system.

Building a honeypot
A honeypot is a system designed to teach system administrators how crackers probe for and exploit a
system. It is a system setup with the expectation and goal that the system will be probed, attacked and
potentially exploited. By learning the tools and methods employed by the cracker, a system administrator
can learn to better protect their own systems and network.

Debian GNU/Linux systems can easily be used to setup a honeynet, if you dedicate the time to implement
and monitor it. You can easily setup the fake honeypot server as well as the firewall7 that controls the
honeynet and some sort of network intrusion detector, put it on the Internet, and wait. Do take care that if
the system is exploited, you are alerted in time (see the section called “The importance of logs and alerts”)
so that you can take appropriate measures and terminate the compromise when you've seen enough. Here
are some of the packages and issues to consider when setting up your honeypot:

• The firewall technology you will use (provided by the Linux kernel).

• syslog-ng, useful for sending logs from the honeypot to a remote syslog server.

• snort, to set up capture of all the incoming network traffic to the honeypot and detect the attacks.

7 You will typically use a bridge firewall so that the firewall itself is not detectable, see the section called “Setting up a bridge firewall ”.

121

Before the compromise

• osh, a SETUID root, security enhanced, restricted shell with logging (see Lance Spitzner's article below).

• Of course, all the daemons you will be using for your fake server honeypot. Depending on what type
of attacker you want to analyse you will or will not harden the honeypot and keep it up to date with
security patches.

• Integrity checkers (see the section called “Checking file system integrity”) and The Coroner's Toolkit
(tct) to do post-attack audits.

• honeyd and farpd to setup a honeypot that will listen to connections to unused IP addresses and forward
them to scripts simulating live services. Also check out iisemulator.

• tinyhoneypot to setup a simple honeypot server with fake services.

If you cannot use spare systems to build up the honeypots and the network systems to protect and control
it you can use the virtualisation technology available in xen or uml (User-Mode-Linux). If you take this
route you will need to patch your kernel with either kernel-patch-xen or kernel-patch-uml.

You can read more about building honeypots in Lanze Spitzner's excellent article http://www.net-se-
curity.org/text/articles/spitzner/honeypot.shtml (from the Know your Enemy series). Also, the http://
project.honeynet.org/ provides valuable information about building honeypots and auditing the attacks
made on them.

122

http://www.net-security.org/text/articles/spitzner/honeypot.shtml
http://www.net-security.org/text/articles/spitzner/honeypot.shtml
http://project.honeynet.org/
http://project.honeynet.org/

Chapter 11. After the compromise
(incident response)
General behavior

If you are physically present when an attack is happening, your first response should be to remove the
machine from the network by unplugging the network card (if this will not adversely affect any business
transactions). Disabling the network at layer 1 is the only true way to keep the attacker out of the compro-
mised box (Phillip Hofmeister's wise advice).

However, some tools installed by rootkits, trojans and, even, a rogue user connected through a back door,
might be capable of detecting this event and react to it. Seeing a rm -rf / executed when you unplug
the network from the system is not really much fun. If you are unwilling to take the risk, and you are sure
that the system is compromised, you should unplug the power cable (all of them if more than one) and
cross your fingers. This may be extreme but, in fact, will avoid any logic-bomb that the intruder might
have programmed. In this case, the compromised system should not be re-booted. Either the hard disks
should be moved to another system for analysis, or you should use other media (a CD-ROM) to boot the
system and analyze it. You should not use Debian's rescue disks to boot the system, but you can use the
shell provided by the installation disks (remember, Alt+F2 will take you to it) to analyze 1 the system.

The most recommended method for recovering a compromised system is to use a live-filesystem on CD-
ROM with all the tools (and kernel modules) you might need to access the compromised system. You can
use the mkinitrd-cd package to build such a CD-ROM2. You might find the http://www.caine-live.net/
(Computer Aided Investigative Environment) CD-ROM useful here too, since it's also a live CD-ROM
under active development with forensic tools useful in these situations. There is not (yet) a Debian-based
tool such as this, nor an easy way to build the CD-ROM using your own selection of Debian packages and
mkinitrd-cd (so you'll have to read the documentation provided with it to make your own CD-ROMs).

If you really want to fix the compromise quickly, you should remove the compromised host from your
network and re-install the operating system from scratch. Of course, this may not be effective because you
will not learn how the intruder got root in the first place. For that case, you must check everything: firewall,
file integrity, log host, log files and so on. For more information on what to do following a break-in, see
http://www.cert.org/tech_tips/root_compromise.html or SANS's https://www.sans.org/white-papers/.

Some common questions on how to handle a compromised Debian GNU/Linux system are also available
in.

Backing up the system
Remember that if you are sure the system has been compromised you cannot trust the installed software
or any information that it gives back to you. Applications might have been trojanized, kernel modules
might be installed, etc.

The best thing to do is a complete file system backup copy (using dd) after booting from a safe medium.
Debian GNU/Linux CD-ROMs can be handy for this since they provide a shell in console 2 when the
installation is started (jump to it using Alt+2 and pressing Enter). From this shell, backup the information

1 >If you are adventurous, you can login to the system and save information on all running processes (you'll get a lot from /proc/nnn/). It is possible
to get the whole executable code from memory, even if the attacker has deleted the executable files from disk. Then pull the power cord.
2 >In fact, this is the tool used to build the CD-ROMs for the http://www.gibraltar.at/ project (a firewall on a live CD-ROM based on the Debian
distribution).

123

http://www.caine-live.net/
http://www.cert.org/tech_tips/root_compromise.html
https://www.sans.org/white-papers/
http://www.gibraltar.at/

After the compromise
(incident response)

to another host if possible (maybe a network file server through NFS/FTP). Then any analysis of the
compromise or re-installation can be performed while the affected system is offline.

If you are sure that the only compromise is a Trojan kernel module, you can try to run the kernel image
from the Debian CD-ROM in rescue mode. Make sure to startup in single user mode, so no other Trojan
processes run after the kernel.

Contact your local CERT
The CERT (Computer and Emergency Response Team) is an organization that can help you recover from
a system compromise. There are CERTs worldwide 3 and you should contact your local CERT in the event
of a security incident which has lead to a system compromise. The people at your local CERT can help
you recover from it.

Providing your local CERT (or the CERT coordination center) with information on the compromise even
if you do not seek assistance can also help others since the aggregate information of reported incidents
is used in order to determine if a given vulnerability is in wide spread use, if there is a new worm aloft,
which new attack tools are being used. This information is used in order to provide the Internet community
with information on the http://www.cert.org/current/, and to publish http://www.cert.org/incident_notes/
and even http://www.cert.org/advisories/. For more detailed information read on how (and why) to report
an incident read http://www.cert.org/tech_tips/incident_reporting.html.

You can also use less formal mechanisms if you need help for recovering from a compromise or want to
discuss incident information. This includes the http://marc.theaimsgroup.com/?l=incidents and the http://
marc.theaimsgroup.com/?l=intrusions.

Forensic analysis
If you wish to gather more information, the tct (The Coroner's Toolkit from Dan Farmer and Wietse Ven-
ema) package contains utilities which perform a post mortem analysis of a system. tct allows the user to
collect information about deleted files, running processes and more. See the included documentation for
more information. These same utilities and some others can be found in http://www.sleuthkit.org/ by Brian
Carrier, which provides a web front-end for forensic analysis of disk images. In Debian you can find both
sleuthkit (the tools) and autopsy (the graphical front-end).

Remember that forensics analysis should be done always on the backup copy of the data, never on the data
itself, in case the data is altered during analysis and the evidence is lost.

You will find more information on forensic analysis in Dan Farmer's and Wietse Venema's http://www.por-
cupine.org/forensics/forensic-discovery/ book (available online), as well as in their http://www.porcu-
pine.org/forensics/column.html and their http://www.porcupine.org/forensics/handouts.html. Brian Carri-
er's newsletter http://www.sleuthkit.org/informer/index.php is also a very good resource on forensic analy-
sis tips. Finally, the http://www.honeynet.org/misc/chall.html are an excellent way to hone your forensic
analysis skills as they include real attacks against honeypot systems and provide challenges that vary from
forensic analysis of disks to firewall logs and packet captures. For information about available forensics
packages in Debian visit https://salsa.debian.org and search for forensic.

FIXME: This paragraph will hopefully provide more information about forensics in a Debian system in
the coming future.

3 > This is a list of some CERTs, for a full list look at the http://www.first.org/about/organization/teams/index.html (FIRST is the Forum of In-
cident Response and Security Teams): http://www.auscert.org.au (Australia), http://www.unam-cert.unam.mx/ (Mexico) http://www.cert.funet.fi
(Finland), http://www.dfn-cert.de (Germany), http://cert.uni-stuttgart.de/ (Germany), http://security.dico.unimi.it/ (Italy), http://www.jpcert.or.jp/
(Japan), http://cert.uninett.no (Norway), http://www.cert.hr (Croatia) http://www.cert.pl (Poland), http://www.cert.ru (Russia), http://www.arnes.si/
si-cert/ (Slovenia) http://www.rediris.es/cert/ (Spain), http://www.switch.ch/cert/ (Switzerland), http://www.cert.org.tw (Taiwan), and http://
www.cert.org (US).

124

http://www.cert.org/current/
http://www.cert.org/incident_notes/
http://www.cert.org/advisories/
http://www.cert.org/tech_tips/incident_reporting.html
http://marc.theaimsgroup.com/?l=incidents
http://marc.theaimsgroup.com/?l=intrusions
http://marc.theaimsgroup.com/?l=intrusions
http://www.sleuthkit.org/
http://www.porcupine.org/forensics/forensic-discovery/
http://www.porcupine.org/forensics/forensic-discovery/
http://www.porcupine.org/forensics/column.html
http://www.porcupine.org/forensics/column.html
http://www.porcupine.org/forensics/handouts.html
http://www.sleuthkit.org/informer/index.php
http://www.honeynet.org/misc/chall.html
https://salsa.debian.org
http://www.first.org/about/organization/teams/index.html
http://www.auscert.org.au
http://www.unam-cert.unam.mx/
http://www.cert.funet.fi
http://www.dfn-cert.de
http://cert.uni-stuttgart.de/
http://security.dico.unimi.it/
http://www.jpcert.or.jp/
http://cert.uninett.no
http://www.cert.hr
http://www.cert.pl
http://www.cert.ru
http://www.arnes.si/si-cert/
http://www.arnes.si/si-cert/
http://www.rediris.es/cert/
http://www.switch.ch/cert/
http://www.cert.org.tw
http://www.cert.org
http://www.cert.org

After the compromise
(incident response)

FIXME: Talk on how to do a debsums on a stable system with the MD5sums on CD and with the recovered
file system restored on a separate partition.

FIXME: Add pointers to forensic analysis papers (like the Honeynet's reverse challenge or http://
staff.washington.edu/dittrich/).

Analysis of malware
Some other tools that can be used for forensic analysis provided in the Debian distribution are: strace and
ltrace

Any of these packages can be used to analyze rogue binaries (such as back doors), in order to determine
how they work and what they do to the system. Some other common tools include ldd (in libc6), strings
and objdump (both in binutils).

If you try to do forensic analysis with back doors or suspected binaries retrieved from compromised sys-
tems, you should do so in a secure environment (for example in a bochs or xen image or a chroot'ed en-
vironment using a user with low privileges4). Otherwise your own system can be back doored/r00ted too!

If you are interested in malware analysis then you should read the http://www.porcupine.org/foren-
sics/forensic-discovery/chapter6.html chapter of Dan Farmer's and Wietse Venema's forensics book.

4 >Be very careful if using chroots, since if the binary uses a kernel-level exploit to increase its privileges it might still be able to infect your system

125

http://staff.washington.edu/dittrich/
http://staff.washington.edu/dittrich/
http://www.porcupine.org/forensics/forensic-discovery/chapter6.html
http://www.porcupine.org/forensics/forensic-discovery/chapter6.html

Chapter 12. Frequently asked
Questions (FAQ)

This chapter introduces some of the most common questions from the Debian security mailing list. You
should read them before posting there or else people might tell you to RTFM.

Security in the Debian operating system

Is Debian more secure than X?
A system is only as secure as its administrator is capable of making it. Debian's default installation of
services aims to be secure, but may not be as paranoid as some other operating systems which install all
services disabled by default. In any case, the system administrator needs to adapt the security of the system
to the local security policy.

For a collection of data regarding security vulnerabilities for many operating systems, see the http://
www.cert.org/stats/cert_stats.html or generate stats using the http://nvd.nist.gov/statistics.cfm (formerly
ICAT) Is this data useful? There are several factors to consider when interpreting the data, and it is worth
noticing that the data cannot be used to compare the vulnerabilities of one operating system versus anoth-
er.1 Also, keep in mind that some reported vulnerabilities regarding Debian apply only to the unstable
(i.e. unreleased) branch.

Is Debian more secure than other Linux distributions (such as Red
Hat, SuSE...)?

There are not really many differences between Linux distributions, with exceptions to the base installation
and package management system. Most distributions share many of the same applications, with differences
mainly in the versions of these applications that are shipped with the distribution's stable release. For ex-
ample, the kernel, Bind, Apache, OpenSSH, Xorg, gcc, zlib, etc. are all common across Linux distributions.

For example, Red Hat was unlucky and shipped when foo 1.2.3 was current, which was then later found
to have a security hole. Debian, on the other hand, was lucky enough to ship foo 1.2.4, which incorporated
the bug fix. That was the case in the big http://www.cert.org/advisories/CA-2000-17.html problem from
a couple years ago.

There is a lot of collaboration between the respective security teams for the major Linux distributions.
Known security updates are rarely, if ever, left unfixed by a distribution vendor. Knowledge of a security
vulnerability is never kept from another distribution vendor, as fixes are usually coordinated upstream, or
by http://www.cert.org. As a result, necessary security updates are usually released at the same time, and
the relative security of the different distributions is very similar.

One of Debian's main advantages with regards to security is the ease of system updates through the use of
apt. Here are some other aspects of security in Debian to consider:

• Debian provides more security tools than other distributions, see Chapter 8, Security tools in Debian.

• Debian's standard installation is smaller (less functionality), and thus more secure. Other distribu-
tions, in the name of usability, tend to install many services by default, and sometimes they are not

1 For example, based on some data, it might seem that Windows NT is more secure than Linux, which is a questionable assertion. After all, Linux
distributions usually provide many more applications compared to Microsoft's Windows NT. This counting vulnerabilities issues are better described
in http://www.dwheeler.com/oss_fs_why.html#security by David A. Wheeler

126

http://www.cert.org/stats/cert_stats.html
http://www.cert.org/stats/cert_stats.html
http://nvd.nist.gov/statistics.cfm
http://www.cert.org/advisories/CA-2000-17.html
http://www.cert.org
http://www.dwheeler.com/oss_fs_why.html#security

Frequently asked Questions (FAQ)

properly configured (remember the http://www.sophos.com/virusinfo/analyses/linuxlion.html http://
www.sophos.com/virusinfo/analyses/linuxramen.html). Debian's installation is not as limited as Open-
BSD (no daemons are active per default), but it's a good compromise. 2

• Debian documents best security practices in documents like this one.

There are many Debian bugs in Bugtraq. Does this mean that it is
very vulnerable?

The Debian distribution boasts a large and growing number of software packages, probably more than
provided by many proprietary operating systems. The more packages installed, the greater the potential
for security issues in any given system.

More and more people are examining source code for flaws. There are many advisories related to source
code audits of the major software components included in Debian. Whenever such source code audits turn
up security flaws, they are fixed and an advisory is sent to lists such as Bugtraq.

Bugs that are present in the Debian distribution usually affect other vendors and distributions as well.
Check the "Debian specific: yes/no" section at the top of each advisory (DSA).

Does Debian have any certification related to security?

Short answer: no.

Long answer: certification costs money (specially a serious security certification), nobody has dedicated
the resources in order to certify Debian GNU/Linux to any level of, for example, the http://niap.nist.gov/
cc-scheme/st/. If you are interested in having a security-certified GNU/Linux distribution, try to provide
the resources needed to make it possible.

There are currently at least two linux distributions certified at different http://en.wikipedia.org/wiki/Eval-
uation_Assurance_Level levels. Notice that some of the CC tests are being integrated into the http://lt-
p.sourceforge.net which is available in Debian in the ltp.

Are there any hardening programs for Debian?

Yes. http://bastille-linux.sourceforge.net/, originally oriented toward other Linux distributions (Red Hat
and Mandrake), it currently works also for Debian. Steps are being taken to integrate the changes made to
the upstream version into the Debian package, named bastille.

Some people believe, however, that a hardening tool does not eliminate the need for good administration.

I want to run XYZ service, which one should I choose?

One of Debian's great strengths is the wide variety of choice available between packages that provide the
same functionality (DNS servers, mail servers, ftp servers, web servers, etc.). This can be confusing to the
novice administrator when trying to determine which package is right for you. The best match for a given
situation depends on a balance between your feature and security needs. Here are some questions to ask
yourself when deciding between similar packages:

• Is the software maintained upstream? When was the last release?

• Is the package mature? The version number really does not tell you about its maturity. Try to trace the
software's history.

2 >Without diminishing the fact that some distributions, such as Red Hat or Mandrake, are also taking into account security in their standard
installations by having the user select security profiles, or using wizards to help with configuration of personal firewalls.

127

http://www.sophos.com/virusinfo/analyses/linuxlion.html
http://www.sophos.com/virusinfo/analyses/linuxramen.html
http://www.sophos.com/virusinfo/analyses/linuxramen.html
http://niap.nist.gov/cc-scheme/st/
http://niap.nist.gov/cc-scheme/st/
http://en.wikipedia.org/wiki/Evaluation_Assurance_Level
http://en.wikipedia.org/wiki/Evaluation_Assurance_Level
http://ltp.sourceforge.net
http://ltp.sourceforge.net
http://bastille-linux.sourceforge.net/

Frequently asked Questions (FAQ)

• Is the software bug-ridden? Have there been security advisories related to it?

• Does the software provide all the functionality you need? Does it provide more than you really need?

How can I make service XYZ more secure in Debian?

You will find information in this document to make some services (FTP, Bind) more secure in Debian
GNU/Linux. For services not covered here, check the program's documentation, or general Linux infor-
mation. Most of the security guidelines for Unix systems also apply to Debian. In most cases, securing
service X in Debian is like securing that service in any other Linux distribution (or Un*x, for that matter).

How can I remove all the banners for services?

If you do not like users connecting to your POP3 daemon, for example, and retrieving information about
your system, you might want to remove (or change) the banner the service shows to users. 3 Doing so
depends on the software you are running for a given service. For example, in postfix, you can set your
SMTP banner in /etc/postfix/main.cf:

 smtpd_banner = $myhostname ESMTP $mail_name (Debian/GNU)

Other software is not as easy to change. ssh will need to be recompiled in order to change the version that
it prints. Take care not to remove the first part (SSH-2.0) of the banner, which clients use to identify
which protocol(s) is supported by your package.

Are all Debian packages safe?

The Debian security team cannot possibly analyze all the packages included in Debian for potential security
vulnerabilities, since there are just not enough resources to source code audit the whole project. However,
Debian does benefit from the source code audits made by upstream developers.

As a matter of fact, a Debian developer could distribute a Trojan in a package, and there is no possible way
to check it out. Even if introduced into a Debian branch, it would be impossible to cover all the possible
situations in which the Trojan would execute. This is why Debian has a "no guarantees" license clause.

However, Debian users can take confidence in the fact that the stable code has a wide audience and most
problems would be uncovered through use. Installing untested software is not recommended in a critical
system (if you cannot provide the necessary code audit). In any case, if there were a security vulnerability
introduced into the distribution, the process used to include packages (using digital signatures) ensures
that the problem can be ultimately traced back to the developer. The Debian project has not taken this
issue lightly.

Why are some log files/configuration files world-readable, isn't this
insecure?

Of course, you can change the default Debian permissions on your system. The current policy regarding
log files and configuration files is that they are world readable unless they provide sensitive information.

Be careful if you do make changes since:

• Processes might not be able to write to log files if you restrict their permissions.

• Some applications may not work if the configuration file they depend on cannot be read. For example, if
you remove the world-readable permission from /etc/samba/smb.conf, the smbclient program
will not work when run by a normal user.

3 >Note that this is 'security by obscurity', and will probably not be worth the effort in the long term.

128

Frequently asked Questions (FAQ)

FIXME: Check if this is written in the Policy. Some packages (i.e. ftp daemons) seem to enforce different
permissions.

Why does /root/ (or UserX) have 755 permissions?

As a matter of fact, the same questions stand for any other user. Since Debian's installation does not place
any file under that directory, there's no sensitive information to protect there. If you feel these permissions
are too broad for your system, consider tightening them to 750. For users, read the section called “Limiting
access to other user's information”.

This Debian security mailing list http://lists.debian.org/debian-devel/2000/11/msg00783.html has more
on this issue.

After installing a grsec/firewall, I started receiving many console
messages! How do I remove them?

If you are receiving console messages, and have configured /etc/syslog.conf to redirect them to
either files or a special TTY, you might be seeing messages sent directly to the console.

The default console log level for any given kernel is 7, which means that any message with lower priority
will appear in the console. Usually, firewalls (the LOG rule) and some other security tools log lower that
this priority, and thus, are sent directly to the console.

To reduce messages sent to the console, you can use dmesg (-n option, see dmseg(8)), which examines
and controls the kernel ring buffer. To fix this after the next reboot, change /etc/init.d/klogd from:

 KLOGD=""

to:

 KLOGD="-c 4"

Use a lower number for -c if you are still seeing them. A description of the different log levels can be
found in /usr/include/sys/syslog.h:

 #define LOG_EMERG 0 /* system is unusable */
 #define LOG_ALERT 1 /* action must be taken immediately */
 #define LOG_CRIT 2 /* critical conditions */
 #define LOG_ERR 3 /* error conditions */
 #define LOG_WARNING 4 /* warning conditions */
 #define LOG_NOTICE 5 /* normal but significant condition */
 #define LOG_INFO 6 /* informational */
 #define LOG_DEBUG 7 /* debug-level messages */

Operating system users and groups

Are all system users necessary?

Yes and no. Debian comes with some predefined users (user id (UID) < 99 as described in http://www.de-
bian.org/doc/debian-policy/ or /usr/share/doc/base-passwd/README) to ease the installation
of some services that require that they run under an appropriate user/UID. If you do not intend to install

129

http://lists.debian.org/debian-devel/2000/11/msg00783.html
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/

Frequently asked Questions (FAQ)

new services, you can safely remove those users who do not own any files in your system and do not run
any services. In any case, the default behavior is that UID's from 0 to 99 are reserved in Debian, and UID's
from 100 to 999 are created by packages on install (and deleted when the package is purged).

To easily find users who don't own any files, execute the following command4 (run it as root, since a
common user might not have enough permissions to go through some sensitive directories):

 cut -f 1 -d : /etc/passwd | \
 while read i; do find / -user "$i" | grep -q . || echo "$i"; done

These users are provided by base-passwd. Look in its documentation for more information on how these
users are handled in Debian. The list of default users (with a corresponding group) follows:

• root: Root is (typically) the superuser.

• daemon: Some unprivileged daemons that need to write to files on disk run as daemon.daemon (e.g.,
portmap, atd, probably others). Daemons that don't need to own any files can run as nobody.nogroup
instead, and more complex or security conscious daemons run as dedicated users. The daemon user is
also handy for locally installed daemons.

• bin: maintained for historic reasons.

• sys: same as with bin. However, /dev/vcs* and /var/spool/cups are owned by group sys.

• sync: The shell of user sync is /bin/sync. Thus, if its password is set to something easy to guess
(such as ""), anyone can sync the system at the console even if they have don't have an account.

• games: Many games are SETGID to games so they can write their high score files. This is explained
in policy.

• man: The man program (sometimes) runs as user man, so it can write cat pages to /var/cache/man

• lp: Used by printer daemons.

• mail: Mailboxes in /var/mail are owned by group mail, as explained in policy. The user and group
are used for other purposes by various MTA's as well.

• news: Various news servers and other associated programs (such as suck) use user and group news in
various ways. Files in the news spool are often owned by user and group news. Programs such as inews
that can be used to post news are typically SETGID news.

• uucp: The uucp user and group is used by the UUCP subsystem. It owns spool and configuration files.
Users in the uucp group may run uucico.

• proxy: Like daemon, this user and group is used by some daemons (specifically, proxy daemons) that
don't have dedicated user id's and that need to own files. For example, group proxy is used by pdnsd,
and squid runs as user proxy.

• majordom: Majordomo has a statically allocated UID on Debian systems for historical reasons. It is
not installed on new systems.

• postgres: Postgresql databases are owned by this user and group. All files in /var/lib/post-
gresql are owned by this user to enforce proper security.

4 Be careful, as this will traverse your whole system. If you have a lot of disk and partitions you might want to reduce it in scope.

130

Frequently asked Questions (FAQ)

• www-data: Some web servers run as www-data. Web content should not be owned by this user, or a
compromised web server would be able to rewrite a web site. Data written out by web servers, including
log files, will be owned by www-data.

• backup: So backup/restore responsibilities can be locally delegated to someone without full root per-
missions.

• operator: Operator is historically (and practically) the only 'user' account that can login remotely, and
doesn't depend on NIS/NFS.

• list: Mailing list archives and data are owned by this user and group. Some mailing list programs may
run as this user as well.

• irc: Used by irc daemons. A statically allocated user is needed only because of a bug in ircd, which
SETUID()s itself to a given UID on startup.

• gnats.

• nobody, nogroup: Daemons that need not own any files run as user nobody and group nogroup. Thus,
no files on a system should be owned by this user or group.

Other groups which have no associated user:

• adm: Group adm is used for system monitoring tasks. Members of this group can read many log files in
/var/log, and can use xconsole. Historically, /var/log was /usr/adm (and later /var/adm),
thus the name of the group.

• tty: TTY devices are owned by this group. This is used by write and wall to enable them to write to
other people's TTYs.

• disk: Raw access to disks. Mostly equivalent to root access.

• kmem: /dev/kmem and similar files are readable by this group. This is mostly a BSD relic, but any
programs that need direct read access to the system's memory can thus be made SETGID kmem.

• dialout: Full and direct access to serial ports. Members of this group can reconfigure the modem, dial
anywhere, etc.

• dip: The group's name stands for "Dial-up IP", and membership in dip allows you to use tools like ppp,
dip, wvdial, etc. to dial up a connection. The users in this group cannot configure the modem, but may
run the programs that make use of it.

• fax: Allows members to use fax software to send / receive faxes.

• voice: Voicemail, useful for systems that use modems as answering machines.

• cdrom: This group can be used locally to give a set of users access to a CDROM drive.

• floppy: This group can be used locally to give a set of users access to a floppy drive.

• tape: This group can be used locally to give a set of users access to a tape drive.

• sudo: Members of this group don't need to type their password when using sudo. See /usr/share/
doc/sudo/OPTIONS.

• audio: This group can be used locally to give a set of users access to an audio device.

• src: This group owns source code, including files in /usr/src. It can be used locally to give a user
the ability to manage system source code.

131

Frequently asked Questions (FAQ)

• shadow: /etc/shadow is readable by this group. Some programs that need to be able to access the
file are SETGID shadow.

• utmp: This group can write to /var/run/utmp and similar files. Programs that need to be able to
write to it are SETGID utmp.

• video: This group can be used locally to give a set of users access to a video device.

• staff: Allows users to add local modifications to the system (/usr/local, /home) without needing
root privileges. Compare with group "adm", which is more related to monitoring/security.

• users: While Debian systems use the private user group system by default (each user has their own
group), some prefer to use a more traditional group system, in which each user is a member of this group.

I removed a system user! How can I recover?

If you have removed a system user and have not made a backup of your password and group files you
can try recovering from this issue using update-passwd (see update-passwd(8)).

What is the difference between the adm and the staff group?

The 'adm' group are usually administrators, and this group permission allows them to read log files without
having to su. The 'staff' group are usually help-desk/junior sysadmins, allowing them to work in /usr/
local and create directories in /home.

Why is there a new group when I add a new user? (or Why does De-
bian give each user one group?)

The default behavior in Debian is that each user has its own, private group. The traditional UN*X scheme
assigned all users to the users group. Additional groups were created and used to restrict access to shared
files associated with different project directories. Managing files became difficult when a single user
worked on multiple projects because when someone created a file, it was associated with the primary group
to which they belong (e.g. 'users').

Debian's scheme solves this problem by assigning each user to their own group; so that with a proper umask
(0002) and the SETGID bit set on a given project directory, the correct group is automatically assigned to
files created in that directory. This makes it easier for people who work on multiple projects, because they
will not have to change groups or umasks when working on shared files.

You can, however, change this behavior by modifying /etc/adduser.conf. Change the USER-
GROUPS variable to 'no', so that a new group is not created when a new user is created. Also, set
USERS_GID to the GID of the users group which all users will belong to.

Questions regarding services and open ports

Why are all services activated upon installation?

That's just an approach to the problem of being, on one side, security conscious and on the other side
user friendly. Unlike OpenBSD, which disables all services unless activated by the administrator, Debian
GNU/Linux will activate all installed services unless deactivated (see the section called “Disabling daemon
services” for more information). After all you installed the service, didn't you?

There has been much discussion on Debian mailing lists (both at debian-devel and at debian-security)
regarding which is the better approach for a standard installation. However, as of this writing (March
2002), there still isn't a consensus.

132

Frequently asked Questions (FAQ)

Can I remove inetd?

Inetd is not easy to remove since netbase depends on the package that provides it (netkit-inetd). If you
want to remove it, you can either disable it (see the section called “Disabling daemon services”) or remove
the package by using the equivs package.

Why do I have port 111 open?

Port 111 is sunrpc's portmapper, and it is installed by default as part of Debian's base installation since
there is no need to know when a user's program might need RPC to work correctly. In any case, it is used
mostly for NFS. If you do not need it, remove it as explained in the section called “Securing RPC services”.

In versions of the portmap package later than 5-5 you can actually have the portmapper installed but
listening only on localhost (by modifying /etc/default/portmap)

What use is identd (port 113) for?

Identd service is an authentication service that identifies the owner of a specific TCP/IP connection to
the remote server accepting the connection. Typically, when a user connects to a remote host, inetd on
the remote host sends back a query to port 113 to find the owner information. It is often used by mail,
FTP and IRC servers, and can also be used to track down which user in your local system is attacking
a remote system.

There has been extensive discussion on the security of identd (See http://lists.debian.org/debian-securi-
ty/2001/08/msg00297.html). In general, identd is more helpful on a multi-user system than on a single
user workstation. If you don't have a use for it, disable it, so that you are not leaving a service open to the
outside world. If you decide to firewall the identd port, please use a reject policy and not a deny policy,
otherwise a connection to a server utilizing identd will hang until a timeout expires (see http://logi.cc/lin-
ux/reject_or_deny.php3).

I have services using port 1 and 6, what are they and how can I remove them?

If you have run the command netstat -an and receive:

 Active Internet connections (servers and established)
 Proto Recv-Q Send-Q Local Address Foreign Address State
 PID/Program name
 raw 0 0 0.0.0.0:1 0.0.0.0:* 7
 -
 raw 0 0 0.0.0.0:6 0.0.0.0:* 7
 -

You are not seeing processes listening on TCP/UDP port 1 and 6. In fact, you are seeing a process listening
on a raw socket for protocols 1 (ICMP) and 6 (TCP). Such behavior is common to both legitimate software
like intrustion detection systems, such as iplogger and portsentry, but some trojans have also been known
yo use them. If you have the mentioned packages simply remove them to close the port. If you do not, try
netstat's -p (process) option to see which process is running these listeners.

I found the port XYZ open, can I close it?

Yes, of course. The ports you are leaving open should adhere to your individual site's policy regarding
public services available to other networks. Check if they are being opened by inetd (see the section called
“Disabling inetd or its services”), or by other installed packages and take the appropriate measures (i.e,
configure inetd, remove the package, avoid it running on boot-up).

133

http://lists.debian.org/debian-security/2001/08/msg00297.html
http://lists.debian.org/debian-security/2001/08/msg00297.html
http://logi.cc/linux/reject_or_deny.php3
http://logi.cc/linux/reject_or_deny.php3

Frequently asked Questions (FAQ)

Will removing services from /etc/services help secure my box?

No, /etc/services only provides a mapping between a virtual name and a given port number. Re-
moving names from this file will not (usually) prevent services from being started. Some daemons may
not run if /etc/services is modified, but that's not the norm. To properly disable the service, see the
section called “Disabling daemon services”.

Common security issues

I have lost my password and cannot access the system!

The steps you need to take in order to recover from this depend on whether or not you have applied the
suggested procedure for limiting access to lilo and your system's BIOS.

If you have limited both, you need to disable the BIOS setting that only allows booting from the hard disk
before proceeding. If you have also forgotten your BIOS password, you will have to reset your BIOS by
opening the system and manually removing the BIOS battery.

Once you have enabled booting from a CD-ROM or diskette enable, try the following:

• Boot-up from a rescue disk and start the kernel

• Go to the virtual console (Alt+F2)

• Mount the hard disk where your /root is

• Edit (Debian 2.2 rescue disk comes with the editor ae, and Debian 3.0 comes with nano-tiny which is
similar to vi) /etc/shadow and change the line:

 root:asdfjl290341274075:XXXX:X:XXXX:X::: (X=any number)

to:

 root::XXXX:X:XXXX:X:::

This will remove the forgotten root password, contained in the first colon separated field after the user
name. Save the file, reboot the system and login with root using an empty password. Remember to reset the
password. This will work unless you have configured the system more tightly, i.e. if you have not allowed
users to have null passwords or not allowed root to login from the console.

If you have introduced these features, you will need to enter into single user mode. If LILO has been
restricted, you will need to rerun lilo just after the root reset above. This is quite tricky since your /etc/
lilo.conf will need to be tweaked due to the root (/) file system being a ramdisk and not the real hard
disk.

Once LILO is unrestricted, try the following:

• Press the Alt, shift or Control key just before the system BIOS finishes, and you should get the LILO
prompt.

• Type linux single, linux init=/bin/sh or linux 1 at the prompt.

• This will give you a shell prompt in single-user mode (it will ask for a password, but you already know it)

• Re-mount read/write the root (/) partition, using the mount command.

134

Frequently asked Questions (FAQ)

 # mount -o remount,rw /

• Change the superuser password with passwd (since you are superuser it will not ask for the previous
password).

How do I accomplish setting up a service for my users without giv-
ing out shell accounts?

For example, if you want to set up a POP service, you don't need to set up a user account for each user
accessing it. It's best to set up directory-based authentication through an external service (like Radius,
LDAP or an SQL database). Just install the appropriate PAM library (libpam-radius-auth, libpam-ldap,
libpam-pgsql or libpam-mysql), read the documentation (for starters, see the section called “User authen-
tication: PAM”) and configure the PAM-enabled service to use the back end you have chosen. This is done
by editing the files under /etc/pam.d/ for your service and modifying the

 auth required pam_unix_auth.so shadow nullok use_first_pass

to, for example, ldap:

 auth required pam_ldap.so

In the case of LDAP directories, some services provide LDAP schemas to be included in your directory
that are required in order to use LDAP authentication. If you are using a relational database, a useful trick
is to use the where clause when configuring the PAM modules. For example, if you have a database with
the following table attributes:

 (user_id, user_name, realname, shell, password, UID, GID, homedir, sys, pop, imap, ftp)

By making the services attributes boolean fields, you can use them to enable or disable access to the
different services just by inserting the appropriate lines in the following files:

• /etc/pam.d/imap:where=imap=1.

• /etc/pam.d/qpopper:where=pop=1.

• /etc/nss-mysql*.conf:users.where_clause = user.sys = 1;.

• /etc/proftpd.conf: SQLWhereClause "ftp=1".

My system is vulnerable! (Are you sure?)

Vulnerability assessment scanner X says my Debian system is vul-
nerable!

Many vulnerability assessment scanners give false positives when used on Debian systems, since they
only use version checks to determine if a given software package is vulnerable, but do not really test the
security vulnerability itself. Since Debian does not change software versions when fixing a package (many
times the fix made for newer releases is back ported), some tools tend to think that an updated Debian
system is vulnerable when it is not.

135

Frequently asked Questions (FAQ)

If you think your system is up to date with security patches, you might want to use the cross references
to security vulnerability databases published with the DSAs (see the section called “Debian Security Ad-
visories”) to weed out false positives, if the tool you are using includes CVE references.

I've seen an attack in my system's logs. Is my system compro-
mised?

A trace of an attack does not always mean that your system has been compromised, and you should take
the usual steps to determine if the system is indeed compromised (see Chapter 11, After the compromise
(incident response)). Even if your system was not vulnerable to the attack that was logged, a determined
attacker might have used some other vulnerability besides the ones you have detected.

I have found strange 'MARK' lines in my logs: Am I compromised?

You might find the following lines in your system logs:

 Dec 30 07:33:36 debian -- MARK --
 Dec 30 07:53:36 debian -- MARK --
 Dec 30 08:13:36 debian -- MARK --

This does not indicate any kind of compromise, and users changing between Debian releases might find
it strange. If your system does not have high loads (or many active services), these lines might appear
throughout your logs. This is an indication that your syslogd daemon is running properly. From syslogd(8):

 -m interval
 The syslogd logs a mark timestamp regularly. The
 default interval between two -- MARK -- lines is 20
 minutes. This can be changed with this option.
 Setting the interval to zero turns it off entirely.

I found users using 'su' in my logs: Am I compromised?

You might find lines in your logs like:

 Apr 1 09:25:01 server su[30315]: + ??? root-nobody
 Apr 1 09:25:01 server PAM_unix[30315]: (su) session opened for user nobody by (UID=0)

Don't worry too much. Check to see if these entries are due to cron jobs (usually /etc/cron.dai-
ly/find or logrotate):

 $ grep 25 /etc/crontab
 25 9 * * * root test -e /usr/sbin/anacron || run-parts --report
 /etc/cron.daily
 $ grep nobody /etc/cron.daily/*
 find:cd / && updatedb --localuser=nobody 2>/dev/null

I have found 'possible SYN flooding' in my logs: Am I under attack?

If you see entries like these in your logs:

136

Frequently asked Questions (FAQ)

 May 1 12:35:25 linux kernel: possible SYN flooding on port X. Sending cookies.
 May 1 12:36:25 linux kernel: possible SYN flooding on port X. Sending cookies.
 May 1 12:37:25 linux kernel: possible SYN flooding on port X. Sending cookies.
 May 1 13:43:11 linux kernel: possible SYN flooding on port X. Sending cookies.

Check if there is a high number of connections to the server using netstat, for example:

 linux:~# netstat -ant | grep SYN_RECV | wc -l
 9000

This is an indication of a denial of service (DoS) attack against your system's X port (most likely against a
public service such as a web server or mail server). You should activate TCP syncookies in your kernel, see
the section called “Configuring syncookies”. Note, however, that a DoS attack might flood your network
even if you can stop it from crashing your systems (due to file descriptors being depleted, the system might
become unresponsive until the TCP connections timeout). The only effective way to stop this attack is to
contact your network provider.

I have found strange root sessions in my logs: Am I compromised?

You might see these kind of entries in your /var/log/auth.log file:

 May 2 11:55:02 linux PAM_unix[1477]: (cron) session closed for user root
 May 2 11:55:02 linux PAM_unix[1476]: (cron) session closed for user root
 May 2 12:00:01 linux PAM_unix[1536]: (cron) session opened for user root by
 (UID=0)
 May 2 12:00:02 linux PAM_unix[1536]: (cron) session closed for user root

These are due to a cron job being executed (in this example, every five minutes). To determine which
program is responsible for these jobs, check entries under: /etc/crontab, /etc/cron.d, /etc/
crond.daily and root's crontab under /var/spool/cron/crontabs.

I have suffered a break-in, what do I do?

There are several steps you might want to take in case of a break-in:

• Check if your system is up to date with security patches for published vulnerabilities. If your system
is vulnerable, the chances that the system is in fact compromised are increased. The chances increase
further if the vulnerability has been known for a while, since there is usually more activity related to
older vulnerabilities. Here is a link to http://www.sans.org/top20/.

• Read this document, especially the Chapter 11, After the compromise (incident response) section.

• Ask for assistance. You might use the debian-security mailing list and ask for advice on how to recov-
er/patch your system.

• Notify your local http://www.cert.org (if it exists, otherwise you may want to consider contacting CERT
directly). This might or might not help you, but, at the very least, it will inform CERT of ongoing
attacks. This information is very valuable in determining which tools and attacks are being used by the
blackhat community.

How can I trace an attack?

By watching the logs (if they have not been tampered with), using intrusion detection systems (see the sec-
tion called “Set up Intrusion Detection”), traceroute, whois and similar tools (including forensic analy-

137

http://www.sans.org/top20/
http://www.cert.org

Frequently asked Questions (FAQ)

sis), you may be able to trace an attack to the source. The way you should react to this information de-
pends solely on your security policy, and what you consider is an attack. Is a remote scan an attack? Is
a vulnerability probe an attack?

Program X in Debian is vulnerable, what do I do?

First, take a moment to see if the vulnerability has been announced in public security mailing lists (like
Bugtraq) or other forums. The Debian Security Team keeps up to date with these lists, so they may also
be aware of the problem. Do not take any further actions if you see an announcement at http://security.de-
bian.org.

If no information seems to be published, please send e-mail about the affected package(s), as well as a
detailed description of the vulnerability (proof of concept code is also OK), to mailto:team@security.de-
bian.org. This will get you in touch with Debian's security team.

The version number for a package indicates that I am still running a
vulnerable version!

Instead of upgrading to a new release, Debian backports security fixes to the version that was shipped in the
stable release. The reason for this is to make sure that the stable release changes as little as possible, so that
things will not change or break unexpectedly as a result of a security fix. You can check if you are running a
secure version of a package by looking at the package changelog, or comparing its exact (upstream version
-slash- debian release) version number with the version indicated in the Debian Security Advisory.

Specific software

proftpd is vulnerable to a Denial of Service attack.
Add DenyFilter *.*/ to your configuration file, and for more information see http://www.proft-
pd.org/bugs.html.

After installing portsentry, there are a lot of ports open.
That's just the way portsentry works. It opens about twenty unused ports to try to detect port scans.

Questions regarding the Debian security team
The security team keeps its list of Frequently Asked Questions at the http://www.debian.org/security/faq.
Please refer to that web page for up to date information.

138

http://security.debian.org
http://security.debian.org
mailto:team@security.debian.org
mailto:team@security.debian.org
http://www.proftpd.org/bugs.html
http://www.proftpd.org/bugs.html
http://www.debian.org/security/faq

Appendix A. Changelog/History
Revision History
Revision 3-19 April 2017 Marcos Fouces<mar-

cos.fouces@gmail.com>
Migrate to Docbook XML.
Build with Publican. No longer use custom Makefile.
Migrate svn repository to git.
Import chinese, italian, spanish, portuguese, japanese, russian, french and german translations to PO for-
mat.
Revision 3-18 February 2015 ThijsKinkhorst<thijs@de-

bian.org>
Clarify FAQ on raw sockets.
Update section 4.5 on GRUB2.
Replace example postrm user removal code with advice to use deluser/delgroup --system
Revision 3-17 January 2015 Thijs Kinkhorst<thijs@de-

bian.org>
Remove mention of MD5 shadow passwords.
Do not recommend dselect for holding packages.
No longer include the Security Team FAQ verbatim, because it duplicates information documented else-
where and is hence perpetually out of date.
Update section on restart after library upgrades to mention needrestart.
Avoid gender-specific language. Patch by Myriam.
Use LSB headers for firewall script. Patch by Dominic Walden.
Revision 3-16 January 2013 JavierFernández-Sanguino

Peña.<jfs@debian.org>
Indicate that the document is not updated with latest versions.
Update pointers to current location of sources.
Update information on security updates for newer releases.
Point information for Developers to online sources instead of keeping the information in the document,
to prevent duplication.
Extend the information regarding securing console access, including limiting the Magic SysRq key.
Update the information related to PAM modules including how to restrict console logins, use cracklib
and use the features avialable in /etc/pam.d/login. Remove the references to obsolete variables in /etc/
login.defs.
Reference some of the PAM modules available to use double factor authentication, for administrators that
want to stop using passwords altogether.
Fix shell script example in Appendix.
Fix reference errors.
Point to the Basille sourceforge project instead of the bastille-unix.org site as it is not responding.
Revision 3-15 December 2010 JavierFernández-Sanguino

Peña<jfs@debian.org>
Change reference to Log Analysis' website as this is no longer available.
Revision 3-14 March 2009 JavierFernández-Sanguino

Peña<jfs@debian.org>
Change the section related to choosing a filesystem: note that ext3 is now the default.
Change the name of the packages related to enigmail to reflect naming changes introduced in Debian.
Revision 3-13 February 2008 JavierFernández-Sanguino

Peña<jfs@debian.org>
Change URLs pointing to Bastille Linux to www.Bastille-UNIX.org since the domain has been http://
bastille-linux.sourceforge.net/press-release-newname.html.
Fix pointers to Linux Ramen and Lion worms.

139

http://bastille-linux.sourceforge.net/press-release-newname.html
http://bastille-linux.sourceforge.net/press-release-newname.html

Changelog/History

Use linux-image in the examples instead of the (old) kernel-image packages.
Fix typos spotted by Francesco Poli.
Revision 3-12 August 2007 JavierFernández-Sanguino

Peña<jfs@debian.org>
Update the information related to security updates. Drop the text talking about Tiger and include informa-
tion on the update-notifier and adept tools (for Desktops) as well as debsecan. Also include some pointers
to other tools available.
Divide the firewall applications based on target users and add fireflier to the Desktop firewall applications
list.
Remove references to libsafe, it's not in the archive any longer (was removed January 2006).
Fix the location of syslog's configuration, thanks to John Talbut.
Revision 3-11 January 2007 JavierFernández-Sanguino

Peña<jfs@debian.org>
Thanks go to Francesco Poli for his extensive review of the document.
Remove most references to the woody release as it is no longer available (in the archive) and security
support for it is no longer available.
Describe how to restrict users so that they can only do file transfers.
Added a note regarding the debian-private declasiffication decision.
Updated link of incident handling guides.
Added a note saying that development tools (compilers, etc.) are not installed now in the default 'etch'
installation.
Added a note saying that development tools (compilers, etc.) are not installed now in the default 'etch'
installation.
Fix references to the master security server.
Add pointers to additional APT-secure documentation.
Improve the description of APT signatures.
Comment out some things which are not yet final related to the mirror's official public keys.
Fixed name of the Debian Testing Security Team.
Remove reference to sarge in an example.
Update the antivirus section, clamav is now available on the release. Also mention the f-prot installer.
Removes all references to freeswan as it is obsolete.
Describe issues related to ruleset changes to the firewall if done remotely and provide some tips (in foot-
notes).
Update the information related to the IDS installation, mention BASE and the need to setup a logging
database.
Rewrite the "running bind as a non-root user" section as this no longer applies to Bind9. Also remove the
reference to the init.d script since the changes need to be done through /etc/default.
Remove the obsolete way to setup iptables rulesets as woody is no longer supported.
Revert the advice regarding LOG_UNKFAIL_ENAB it should be set to 'no' (as per default).
Added more information related to updating the system with desktop tools (including update-notifier) and
describe aptitude usage to update the system. Also note that dselect is deprecated.
Updated the contents of the FAQ and remove redundant paragraphs.
Review and update the section related to forensic analysis of malware.
Remove or fix some dead links.
Fix many typos and gramatical errors reported by Francesco Poli.
Revision 3-10 November 2006 JavierFernández-Sanguino

Peña<jfs@debian.org>
Provide examples using apt-cache's rdepends as suggested by Ozer Sarilar.
Fix location of Squid's user's manual because of its relocation as notified by Oskar Pearson (its maintainer).
Fix information regarding umask, it's logins.defs (and not limits.conf) where this can be configured for all
login connections. Also state what is Debian's default and what would be a more restrictive value for both
users and root. Thanks to Reinhard Tartler for spotting the bug.
Revision 3-9 October 2006 JavierFernández-Sanguino

Peña<jfs@debian.org>

140

Changelog/History

Add information on how to track security vulnerabilities and add references to the Debian Testing Security
Tracker.
Add more information on the security support for testing.
Fix a large number of typos with a patch provided by Simon Brandmair.
Added section on how to disable root prompt on initramfs provided by Max Attems.
Remove references to queso.
Note that testing is now security-supported in the introduction.
Revision 3-8 July 2006 JavierFernández-Sanguino

Peña<jfs@debian.org>
Rewrote the information on how to setup ssh chroots to clarify the different options available, thank to
Bruce Park for bringing up the different mistakes in this appendix.
Fix lsof call as suggested by Christophe Sahut.
Include patches for typo fixes from Uwe Hermann.
Fix typo in reference spotted by Moritz Naumann.
Revision 3-7 April 2006 JavierFernández-Sanguino

Peña<jfs@debian.org>
Add a section on Debian Developer's best practices for security.
Ammended firewall script with comments from WhiteGhost.
Revision 3-6 March 2006 JavierFernández-Sanguino

Peña<jfs@debian.org>
Included a patch from Thomas Sjögren which describes that noexec works as expected with "new" ker-
nels, adds information regarding tempfile handling, and some new pointers to external documentation.
Add a pointer to Dan Farmer's and Wietse Venema's forensic discovery web site, as suggested by Freek
Dijkstra, and expanded a little bit the forensic analysis section with more pointers.
Fixed URL of Italy's CERT, thanks to Christoph Auer.
Reuse Joey Hess' information at the wiki on secure apt and introduce it in the infrastructure section.
Review sections referring to old versions (woody or potato).
Fix some cosmetic issues with patch from Simon Brandmair.
Included patches from Carlo Perassi: acl patches are obsolete, openwall patches are obsolete too, removed
fixme notes about 2.2 and 2.4 series kernels, hap is obsolete (and not present in WNPP), remove references
to Immunix (StackGuard is now in Novell's hands), and fix a FIXME about the use of bsign or elfsign.
Updated references to SElinux web pages to point to the Wiki (currently the most up to date source of
information).
Include file tags and make a more consistent use of "MD5 sum" with a patch from Jens Seidel.
Patch from Joost van Baal improving the information on the firewall section (pointing to the wiki instead
of listing all firewall packages available) (Closes: #339865).
Review the FAQ section on vulnerability stats, thanks to Carlos Galisteo de Cabo for pointing out that
it was out of date.
Use the quote from the Social Contract 1.1 instead of 1.0 as suggested by Francesco Poli.
Revision 3-5 November 2005 JavierFernández-Sanguino

Peña<jfs@debian.org>
Note on the SSH section that the chroot will not work if using the nodev option in the partition and point
to the latest ssh packages with the chroot patch, thanks to Lutz Broedel for pointing these issues out.
Fix typo spotted by Marcos Roberto Greiner (md5sum should be sha1sum in code snippet).
Included Jens Seidel's patch fixing a number of package names and typos.
Slightly update of the tools section, removed tools no longer available and added some new ones.
Rewrite parts of the section related to where to find this document and what formats are available (the
website does provide a PDF version). Also note that copies on other sites and translations might be obsolete
(many of the Google hits for the manual in other sites are actually out of date).
Revision 3-4 August-September 2005 JavierFernández-Sanguino

Peña<jfs@debian.org>
Improved the after installation security enhancements related to kernel configuration for network level
protection with a sysctl.conf file provided by Will Moy.
Improved the gdm section, thanks to Simon Brandmair.

141

Changelog/History

Typo fixes from Frédéric Bothamy and Simon Brandmair.
Improvements in the after installation sections related to how to generate the MD5 (or SHA-1) sums of
binaries for periodic review.
Updated the after installation sections regarding checksecurity configuration (was out of date).
Revision 3-3 June 2005 JavierFernández-Sanguino

Peña<jfs@debian.org>
Added a code snippet to use grep-available to generate the list of packages depending on Perl. As requested
in #302470.
Rewrite of the section on network services (which ones are installed and how to disable them).
Added more information to the honeypot deployment section mentioning useful Debian packages.
Revision 3-2 March 2005 JavierFernández-Sanguino

Peña<jfs@debian.org>
Expanded the PAM configuration limits section.
Added information on how to use pam_chroot for openssh (based on pam_chroot's README).
Fixed some minor issues reported by Dan Jacobson.
Updated the kernel patches information partially based on a patch from Carlo Perassi and also by adding
deprecation notes and new kernel patches available (adamantix).
Included patch from Simon Brandmair that fixes a sentence related to login failures in terminal.
Added Mozilla/Thunderbird to the valid GPG agents as suggested by Kapolnai Richard.
Expanded the section on security updates mentioning library and kernel updates and how to detect when
services need to be restarted.
Rewrote the firewall section, moved the information that applies to woody down and expand the other
sections including some information on how to manually set the firewall (with a sample script) and how
to test the firewall configuration.
Added some information preparing for the 3.1 release.
Added more detailed information on kernel upgrades, specifically targeted at those that used the old in-
stallation system.
Added a small section on the experimental apt 0.6 release which provides package signing checks. Moved
old content to the section and also added a pointer to changes made in aptitude.
Typo fixes spotted by Frédéric Bothamy.
Revision 3-1 January 2005 JavierFernández-Sanguino

Peña<jfs@debian.org>
Added clarification to ro /usr with patch from Joost van Baal.
Apply patch from Jens Seidel fixing many typos.
FreeSWAN is dead, long live OpenSWAN.
Added information on restricting access to RPC services (when they cannot be disabled) also included
patch provided by Aarre Laakso.
Update aj's apt-check-sigs script.
Apply patch Carlo Perassi fixing URLs.
Apply patch from Davor Ocelic fixing many errors, typos, urls, grammar and FIXMEs. Also adds some
additional information to some sections.
Rewrote the section on user auditing, highlight the usage of script which does not have some of the issues
associated to shell history.
Revision 3-0 December 2004 JavierFernández-Sanguino

Peña<jfs@debian.org>
Rewrote the user-auditing information and include examples on how to use script.
Revision 2-99 March 2004 JavierFernández-Sanguino

Peña<jfs@debian.org>
Added information on references in DSAs and CVE-Compatibility.
Added information on apt 0.6 (apt-secure merge in experimental).
Fixed location of Chroot daemons HOWTO as suggested by Shuying Wang.
Changed APACHECTL line in the Apache chroot example (even if its not used at all) as suggested by
Leonard Norrgard.
Added a footnote regarding hardlink attacks if partitions are not setup properly.

142

Changelog/History

Added some missing steps in order to run bind as named as provided by Jeffrey Prosa.
Added notes about Nessus and Snort out-of-dateness in woody and availability of backported packages.
Added a chapter regarding periodic integrity test checks.
Clarified the status of testing regarding security updates (Debian bug 233955).
Added more information regarding expected contents in securetty (since it's kernel specific).
Added pointer to snoopylogger (Debian bug 179409).
Added reference to guarddog (Debian bug 170710).
apt-ftparchive is in apt-utils, not in apt (thanks to Emmanuel Chantreau for pointing this out).
Removed jvirus from AV list.
Revision 2-98 JavierFernández-Sanguino

Peña<jfs@debian.org>
Fixed URL as suggested by Frank Lichtenheld.
Fixed PermitRootLogin typo as suggested by Stefan Lindenau.
Revision 2-97 September 2003 JavierFernández-Sanguino

Peña<jfs@debian.org>
Added those that have made the most significant contributions to this manual (please mail me if you think
you should be in the list and are not).
Added some blurb about FIXME/TODOs.
Moved the information on security updates to the beginning of the section as suggested by Elliott Mitchell.
Added grsecurity to the list of kernel-patches for security but added a footnote on the current issues with
it as suggested by Elliott Mitchell.
Removed loops (echo to 'all') in the kernel's network security script as suggested by Elliott Mitchell.
Added more (up-to-date) information in the antivirus section.
Rewrote the buffer overflow protection section and added more information on patches to the compiler
to enable this kind of protection.
Revision 2-96 August 2003 JavierFernández-Sanguino

Peña<jfs@debian.org>
Removed (and then re-added) appendix on chrooting Apache. The appendix is now dual-licensed.
Revision 2-95 June 2003 JavierFernández-Sanguino

Peña<jfs@debian.org>
Fixed typos spotted by Leonard Norrgard.
Added a section on how to contact CERT for incident handling (Chapter 11, After the compromise (incident
response)).
More information on setting up a Squid proxy.
Added a pointer and removed a FIXME thanks to Helge H. F.
Fixed a typo (save_inactive) spotted by Philippe Faes.
Fixed several typos spotted by Jaime Robles.
Revision 2-94 April 2003 JavierFernández-Sanguino

Peña<jfs@debian.org>
Following Maciej Stachura's suggestions I've expanded the section on limiting users.
Fixed typo spotted by Wolfgang Nolte.
Fixed links with patch contributed by Ruben Leote Mendes
Added a link to David Wheeler's excellent document on the footnote about counting security vulnerabil-
ities.
Revision 2-93 March 2003 FrédéricSchütz<schutz@math-

gen.ch>
rewrote entirely the section of ext2 attributes (lsattr/chattr)
Revision 2-92 February 2003 JavierFernández-Sanguino

Peña<jfs@debian.org>,
FrédéricSchütz<schutz@math-
gen.ch>

Merge section 9.3 ("useful kernel patches") into section 4.13 ("Adding kernel patches"), and added some
content.
Added a few more TODOs.

143

Changelog/History

Added information on how to manually check for updates and also about cron-apt. That way Tiger is not
perceived as the only way to do automatic update checks.
Slightly rewrite of the section on executing a security updates due to Jean-Marc Ranger comments.
Added a note on Debian's installation (which will suggest the user to execute a security update right after
installation).
Revision 2-91 January/February 2003 JavierFernández-Sanguino

Peña<jfs@debian.org>
Added a patch contributed by Frédéric Schütz.
Added a few more references on capabilities thanks to Frédéric.
Slight changes in the bind section adding a reference to BIND's 9 online documentation and proper refer-
ences in the first area (Hi Pedro!).
Fixed the changelog date - new year :-).
Added a reference to Colin's articles for the TODOs.
Removed reference to old ssh+chroot patches.
More patches from Carlo Perassi.
Typo fixes (recursive in Bind is recursion), pointed out by Maik Holtkamp.
Revision 2-9 December 2002 JavierFernández-Sanguino

Peña<jfs@debian.org>
Reorganized the information on chroot (merged two sections, it didn't make much sense to have them
separated).
Added the notes on chrooting Apache provided by Alexandre Ratti.
Applied patches contributed by Guillermo Jover.
Revision 2-8 JavierFernández-Sanguino

Peña<jfs@debian.org>
Applied patches from Carlo Perassi, fixes include: re-wrapping the lines, URL fixes, and fixed some
FIXMEs.
Updated the contents of the Debian security team FAQ.
Added a link to the Debian security team FAQ and the Debian Developer's reference, the duplicated sec-
tions might (just might) be removed in the future.
Fixed the hand-made auditing section with comments from Michal Zielinski.
Added links to wordlists (contributed by Carlo Perassi).
Fixed some typos (still many around).
Fixed TDP links as suggested by John Summerfield.
Revision 2-7 JavierFernández-Sanguino

Peña<jfs@debian.org>
Some typo fixes contributed by Tuyen Dinh, Bartek Golenko and Daniel K. Gebhart.
Note regarding /dev/kmem rootkits contributed by Laurent Bonnaud.
Fixed typos and FIXMEs contributed by Carlo Perassi.
Revision 2-6 September 2002 CrisTillman<tillman@voice-

trak.com>
Changed around to improve grammar/spelling.
s/host.deny/hosts.deny/ (1 place).
Applied Larry Holish's patch (quite big, fixes a lot of FIXMEs).
Revision 2-5.1 September 2002 JavierFernández-Sanguino

Peña<jfs@debian.org>
Fixed minor typos submitted by Thiemo Nagel.
Added a footnote suggested by Thiemo Nagel.
Fixed an URL link.
Revision 2-5.0 August 2002 JavierFernández-Sanguino

Peña<jfs@debian.org>
Applied a patch contributed by Philipe Gaspar regarding the Squid which also kills a FIXME.
Yet another FAQ item regarding service banners taken from the debian-security mailing list (thread "Telnet
information" started 26th July 2002).

144

Changelog/History

Added a note regarding use of CVE cross references in the How much time does the Debian security
team... FAQ item.
Added a new section regarding ARP attacks contributed by Arnaud "Arhuman" Assad.
New FAQ item regarding dmesg and console login by the kernel.
Small tidbits of information to the signature-checking issues in packages (it seems to not have gotten past
beta release).
New FAQ item regarding vulnerability assessment tools false positives.
Added new sections to the chapter that contains information on package signatures and reorganized it as
a new Debian Security Infrastructure chapter.
New FAQ item regarding Debian vs. other Linux distributions.
New section on mail user agents with GPG/PGP functionality in the security tools chapter.
Clarified how to enable MD5 passwords in woody, added a pointer to PAM as well as a note regarding
the max definition in PAM.
Added a new appendix on how to create chroot environments (after fiddling a bit with makejail and fixing,
as well, some of its bugs), integrated duplicate information in all the appendix.
Added some more information regarding SSH chrooting and its impact on secure file transfers. Some in-
formation has been retrieved from the debian-security mailing list (June 2002 thread: secure file transfers).
New sections on how to do automatic updates on Debian systems as well as the caveats of using testing
or unstable regarding security updates.
New section regarding keeping up to date with security patches in the Before compromise section as well
as a new section about the debian-security-announce mailing list.
Added information on how to automatically generate strong passwords.
New section regarding login of idle users.
Reorganized the securing mail server section based on the Secure/hardened/minimal Debian (or "Why is
the base system the way it is?") thread on the debian-security mailing list (May 2002).
Reorganized the section on kernel network parameters, with information provided in the debian-security
mailing list (May 2002, syn flood attacked? thread) and added a new FAQ item as well.
New section on how to check users passwords and which packages to install for this.
New section on PPTP encryption with Microsoft clients discussed in the debian-security mailing list (April
2002).
Added a new section describing what problems are there when binding any given service to a specific
IP address, this information was written based on the Bugtraq mailing list in the thread: Linux kernel 2.4
"weak end host" issue (previously discussed on debian-security as "arp problem") (started on May 9th
2002 by Felix von Leitner).
Added information on ssh protocol version 2.
Added two subsections related to Apache secure configuration (the things specific to Debian, that is).
Added a new FAQ related to raw sockets, one related to /root, an item related to users' groups and another
one related to log and configuration files permissions.
Added a pointer to a bug in libpam-cracklib that might still be open... (need to check).
Added more information regarding forensics analysis (pending more information on packet inspection
tools such as tcpflow).
Changed the "what should I do regarding compromise" into a bullet list and included some more stuff.
Added some information on how to set up the Xscreensaver to lock the screen automatically after the
configured timeout.
Added a note related to the utilities you should not install in the system. Included a note regarding Perl and
why it cannot be easily removed in Debian. The idea came after reading Intersect's documents regarding
Linux hardening.
Added information on lvm and journalling file systems, ext3 recommended. The information there might
be too generic, however.
Added a link to the online text version (check).
Added some more stuff to the information on firewalling the local system, triggered by a comment made
by Hubert Chan in the mailing list.

145

Changelog/History

Added more information on PAM limits and pointers to Kurt Seifried's documents (related to a post by
him to Bugtraq on April 4th 2002 answering a person that had ``discovered'' a vulnerability in Debian
GNU/Linux related to resource starvation).
As suggested by Julián Muñoz, provided more information on the default Debian umask and what a user
can access if given a shell in the system (scary, huh?).
Included a note in the BIOS password section due to a comment from Andreas Wohlfeld.
Included patches provided by Alfred E. Heggestad fixing many of the typos still present in the document.
Added a pointer to the changelog in the Credits section since most people who contribute are listed here
(and not there).
Added a few more notes to the chattr section and a new section after installation talking about system
snapshots. Both ideas were contributed by Kurt Pomeroy.
Added a new section after installation just to remind users to change the boot-up sequence.
Added some more TODO items provided by Korn Andras.
Added a pointer to the NIST's guidelines on how to secure DNS provided by Daniel Quinlan.
Added a small paragraph regarding Debian's SSL certificates infrastructure.
Added Daniel Quinlan's suggestions regarding ssh authentication and exim's relay configuration.
Added more information regarding securing bind including changes suggested by Daniel Quinlan and an
appendix with a script to make some of the changes commented on in that section.
Added a pointer to another item regarding Bind chrooting (needs to be merged).
Added a one liner contributed by Cristian Ionescu-Idbohrn to retrieve packages with tcpwrappers support.
Added a little bit more info on Debian's default PAM setup.
Included a FAQ question about using PAM to provide services without shell accounts.
Moved two FAQ items to another section and added a new FAQ regarding attack detection (and compro-
mised systems).
Included information on how to set up a bridge firewall (including a sample Appendix). Thanks to Francois
Bayart who sent this to me in March.
Added a FAQ regarding the syslogd's MARK heartbeat from a question answered by Noah Meyerhans
and Alain Tesio in December 2001.
Included information on buffer overflow protection as well as some information on kernel patches.
Added more information (and reorganized) the firewall section. Updated the information regarding the
iptables package and the firewall generators available.
Reorganized the information regarding log checking, moved logcheck information from host intrusion
detection to that section.
Added some information on how to prepare a static package for bind for chrooting (untested).
Added a FAQ item regarding some specific servers/services (could be expanded with some of the recom-
mendations from the debian-security list).
Added some information on RPC services (and when it's necessary).
Added some more information on capabilities (and what lcap does). Is there any good documentation on
this? I haven't found any documentation on my 2.4 kernel.
Fixed some typos.
Revision 2-4 June 2002 JavierFernández-Sanguino

Peña<jfs@debian.org>
Rewritten part of the BIOS section.
Revision 2-3.1 April 2002 JavierFernández-Sanguino

Peña<jfs@debian.org>
Wrapped most file locations with the file tag.
Fixed typo noticed by Edi Stojicevi.
Slightly changed the remote audit tools section.
Added some todo items.
Added more information regarding printers and cups config file (taken from a thread on debian-security).
Added a patch submitted by Jesus Climent regarding access of valid system users to Proftpd when con-
figured as anonymous server.
Small change on partition schemes for the special case of mail servers.
Added Hacking Linux Exposed to the books section.

146

Changelog/History

Fixed directory typo noticed by Eduardo Pérez Ureta.
Fixed /etc/ssh typo in checklist noticed by Edi Stojicevi.
Revision 2-3.0 April 2002 JavierFernández-Sanguino

Peña<jfs@debian.org>
Fixed location of dpkg conffile.
Remove Alexander from contact information.
Added alternate mail address.
Fixed Alexander mail address (even if commented out).
Fixed location of release keys (thanks to Pedro Zorzenon for pointing this out).
Revision 2-2 April 2002 JavierFernández-Sanguino

Peña<jfs@debian.org>
Fixed typos, thanks to Jamin W. Collins.
Added a reference to apt-extracttemplate manpage (documents the APT::ExtractTemplate config).
Added section about restricted SSH. Information based on that posted by Mark Janssen, Christian G.
Warden and Emmanuel Lacour on the debian-security mailing list.
Added information on antivirus software.
Added a FAQ: su logs due to the cron running as root.
Revision 2-1 April 2002 JavierFernández-Sanguino

Peña<jfs@debian.org>
Changed FIXME from lshell thanks to Oohara Yuuma.
Added package to sXid and removed comment since it *is* available.
Fixed a number of typos discovered by Oohara Yuuma.
ACID is now available in Debian (in the acidlab package) thanks to Oohara Yuuma for noticing.
Fixed LinuxSecurity links (thanks to Dave Wreski for telling).
Revision 2-0 March 2002 JavierFernández-Sanguino

Peña<jfs@debian.org>
Converted the HOWTO into a Manual (now I can properly say RTFM).
Added more information regarding tcp wrappers and Debian (now many services are compiled with sup-
port for them so it's no longer an inetd issue).
Clarified the information on disabling services to make it more consistent (rpc info still referred to up-
date-rc.d).
Added small note on lprng.
Added some more info on compromised servers (still very rough).
Fixed typos reported by Mark Bucciarelli.
Added some more steps in password recovery to cover the cases when the admin has set paranoid-mod-
e=on.
Added some information to set paranoid-mode=on when login in console.
New paragraph to introduce service configuration.
Reorganized the After installation section so it is more broken up into several issues and it's easier to read.
Wrote information on how to set up firewalls with the standard Debian 3.0 setup (iptables package).
Small paragraph explaining why installing connected to the Internet is not a good idea and how to avoid
this using Debian tools.
Small paragraph on timely patching referencing to IEEE paper.
Appendix on how to set up a Debian snort box, based on what Vladimir sent to the debian-security mailing
list (September 3rd 2001).
Information on how logcheck is set up in Debian and how it can be used to set up HIDS.
Information on user accounting and profile analysis.
Included apt.conf configuration for read-only /usr copied from Olaf Meeuwissen's post to the debian-se-
curity mailing list.
New section on VPN with some pointers and the packages available in Debian (needs content on how
to set up the VPNs and Debian-specific issues), based on Jaroslaw Tabor's and Samuli Suonpaa's post to
debian-security.
Small note regarding some programs to automatically build chroot jails.

147

Changelog/History

New FAQ item regarding identd based on a discussion in the debian-security mailing list (February 2002,
started by Johannes Weiss).
New FAQ item regarding inetd based on a discussion in the debian-security mailing list (February 2002).
Introduced note on rcconf in the "disabling services" section.
Varied the approach regarding LKM, thanks to Philipe Gaspar.
Added pointers to CERT documents and Counterpane resources.
Revision 1-99 January 2002 JavierFernández-Sanguino

Peña<jfs@debian.org>
Added a new FAQ item regarding time to fix security vulnerabilities.
Reorganized FAQ sections.
Started writing a section regarding firewalling in Debian GNU/Linux (could be broadened a bit).
Fixed typos sent by Matt Kraai.
Fixed DNS information.
Added information on whisker and nbtscan to the auditing section.
Fixed some wrong URLs.
Revision 1-98 January 2002 JavierFernández-Sanguino

Peña<jfs@debian.org>
Added a new section regarding auditing using Debian GNU/Linux.
Added info regarding finger daemon taken from the security mailing list.
Revision 1-97 January 2002 JavierFernández-Sanguino

Peña<jfs@debian.org>
Fixed link for Linux Trustees.
Fixed typos (patches from Oohara Yuuma and Pedro Zorzenon).
Revision 1-96 December 2001 JavierFernández-Sanguino

Peña<jfs@debian.org>
Reorganized service installation and removal and added some new notes.
Added some notes regarding using integrity checkers as intrusion detection tools.
Added a chapter regarding package signatures.
Revision 1-95 December 2001 JavierFernández-Sanguino

Peña<jfs@debian.org>
Added notes regarding Squid security sent by Philipe Gaspar.
Fixed rootkit links thanks to Philipe Gaspar.
Revision 1-94 November 2001 JavierFernández-Sanguino

Peña<jfs@debian.org>
Added some notes regarding Apache and Lpr/lpng.
Added some information regarding noexec and read-only partitions.
Rewrote how users can help in Debian security issues (FAQ item).
Revision 1-93 November 2001 JavierFernández-Sanguino

Peña<jfs@debian.org>
Fixed location of mail program.
Added some new items to the FAQ.
Revision 1-92 October 2001 JavierFernández-Sanguino

Peña<jfs@debian.org>
Added a small section on how Debian handles security.
Clarified MD5 passwords (thanks to `rocky').
Added some more information regarding harden-X from Stephen van Egmond.
Added some new items to the FAQ.
Revision 1-91 October 2001 JavierFernández-Sanguino

Peña<jfs@debian.org>
Added some forensics information sent by Yotam Rubin.
Added information on how to build a honeynet using Debian GNU/Linux.
Added some more TODOS.
Fixed more typos (thanks Yotam!).

148

Changelog/History

Revision 1-9 October 2001 JavierFernández-Sanguino
Peña<jfs@debian.org>

Added patch to fix misspellings and some new information (contributed by Yotam Rubin).
Added references to other online (and offline) documentation both in a section (see the section called “Be
aware of general security problems”) by itself and inline in some sections.
Added some information on configuring Bind options to restrict access to the DNS server.
Added information on how to automatically harden a Debian system (regarding the harden package and
bastille).
Removed some done TODOs and added some new ones.
Revision 1-8 October 2001 JavierFernández-Sanguino

Peña<jfs@debian.org>
Added the default user/group list provided by Joey Hess to the debian-security mailing list.
Added information on LKM root-kits (the section called “Loadable Kernel Modules (LKM)”) contributed
by Philipe Gaspar.
Added information on Proftp contributed by Emmanuel Lacour.
Recovered the checklist Appendix from Era Eriksson.
Added some new TODO items and removed other fixed ones.
Manually included Era's patches since they were not all included in the previous version.
Revision 1-7 September 2001 JavierFernández-Sanguino

Peña<jfs@debian.org>, Er-
aEriksson<era@iki.fi>

Typo fixes and wording changes.
Minor changes to tags in order to keep on removing the tt tags and substitute prgn/package tags for them.
Revision 1-6 August 2001 JavierFernández-Sanguino

Peña<jfs@debian.org>
Added pointer to document as published in the DDP (should supersede the original in the near future).
Started a mini-FAQ (should be expanded) with some questions recovered from my mailbox.
Added general information to consider while securing.
Added a paragraph regarding local (incoming) mail delivery.
Added some pointers to more information.
Added information regarding the printing service.
Added a security hardening checklist.
Reorganized NIS and RPC information.
Added some notes taken while reading this document on my new Visor :).
Fixed some badly formatted lines.
Fixed some typos.
Added a Genius/Paranoia idea contributed by Gaby Schilders.
Revision 1-5 May 2001 JavierFernández-Sanguino

Peña<jfs@debian.org>,
JosipRodin<joy@de-
bian.org>

Added paragraphs related to BIND and some FIXMEs.
Revision 1-4 May 2001 JavierFernández-Sanguino

Peña<jfs@debian.org>
Small setuid check paragraph
Various minor cleanups.
Found out how to use sgml2txt -f for the txt version.
Revision 1-3 March 2001 JavierFernández-Sanguino

Peña<jfs@debian.org>
Added a security update after installation paragraph.
Added a proftpd paragraph.
This time really wrote something about XDM, sorry for last time.
Revision 1-2 December 2000 JavierFernández-Sanguino

Peña<jfs@debian.org>

149

Changelog/History

Lots of grammar corrections by James Treacy, new XDM paragraph.
Revision 1-1 December 2000 JavierFernández-Sanguino

Peña<jfs@debian.org>
Typo fixes, miscellaneous additions.
Revision 1-0 December 2000 JavierFernández-Sanguino

Peña<jfs@debian.org>
Initial release.

150

Appendix B. Appendix
The hardening process step by step

Below is a post-installation, step-by-step procedure for hardening a Debian 2.2 GNU/Linux system. This
is one possible approach to such a procedure and is oriented toward the hardening of network services.
It is included to show the entire process you might use during configuration. Also, see the section called
“Configuration checklist”.

• Install the system, taking into account the information regarding partitioning included earlier in this
document. After base installation, go into custom install. Do not select task packages.

• Using dselect, remove all unneeded but selected packages before doing [I]nstall. Keep the bare mini-
mum of packages for the system.

• Update all software from the latest packages available at security.debian.org as explained previously in
the section called “Execute a security update”.

• Implement the suggestions presented in this manual regarding user quotas, login definitions and lilo

• Make a list of services currently running on your system. Try:

 $ ps aux
 $ netstat -pn -l -A inet
 # /usr/sbin/lsof -i | grep LISTEN

You will need to install lsof-2.2 for the third command to work (run it as root). You should be aware
that lsof can translate the word LISTEN to your locale settings.

• In order to remove unnecessary services, first determine what package provides the service and how it
is started. This can be accomplished by checking the program that listens in the socket. The following
shell script, which uses the programs lsof and dpkg, does just that:

#!/bin/sh
FIXME: this is quick and dirty; replace with a more robust script snippet
for i in `sudo lsof -i | grep LISTEN | cut -d " " -f 1 |sort -u` ; do
 pack=`dpkg -S $i |grep bin |cut -f 1 -d : | uniq`
 echo "Service $i is installed by $pack";
 init=`dpkg -L $pack |grep init.d/ `
 if [! -z "$init"]; then
 echo "and is run by $init"
 fi
done

• Once you find any unwanted services, remove the associated package (with dpkg --purge), or disable
the service from starting automatically at boot time using update-rc.d (see the section called “Disabling
daemon services”).

• For inetd services (launched by the superdaemon), check which services are enabled in /etc/inet-
d.conf using:

151

Appendix

 $ grep -v "^#" /etc/inetd.conf | sort -u

Then disable those services that are not needed by commenting out the line that includes them in /etc/
inetd.conf, removing the package, or using update-inetd.

• If you have wrapped services (those using /usr/sbin/tcpd), check that the files /etc/hosts.allow
and /etc/hosts.deny are configured according to your service policy.

• If the server uses more than one external interface, depending on the service, you may want to limit the
service to listen on a specific interface. For example, if you want internal FTP access only, make the
FTP daemon listen only on your management interface, not on all interfaces (i.e, 0.0.0.0:21).

• Re-boot the machine, or switch to single user mode and then back to multiuser using the commands:

 # init 1
 (....)
 # init 2

• Check the services now available, and, if necessary, repeat the steps above.

• Now install the needed services, if you have not done so already, and configure them properly.

• Use the following shell command to determine what user each available service is running as:

 # for i in `/usr/sbin/lsof -i |grep LISTEN |cut -d " " -f 1 |sort -u`; \
 > do user=`ps ef |grep $i |grep -v grep |cut -f 1 -d " "` ; \
 > echo "Service $i is running as user $user"; done

Consider changing these services to a specific user/group and maybe chroot'ing them for increased se-
curity. You can do this by changing the /etc/init.d scripts which start the service. Most services
in Debian use start-stop-daemon, which has options (--change-uid and --chroot) for accom-
plishing this. A word of warning regarding the chroot'ing of services: you may need to put all the files
installed by the package (use dpkg -L) providing the service, as well as any packages it depends on, in
the chroot'ed environment. Information about setting up a chroot environment for the ssh program can
be found in the section called “Chroot environment for SSH”.

• Repeat the steps above in order to check that only desired services are running and that they are running
as the desired user/group combination.

• Test the installed services in order to see if they work as expected.

• Check the system using a vulnerability assessment scanner (like nessus), in order to determine vulner-
abilities in the system (i.e., misconfiguration, old services or unneeded services).

• Install network and host intrusion measures like snort and logcheck.

• Repeat the network scanner step and verify that the intrusion detection systems are working correctly.

For the truly paranoid, also consider the following:

• Add firewalling capabilities to the system, accepting incoming connections only to offered services and
limiting outgoing connections only to those that are authorized.

• Re-check the installation with a new vulnerability assessment using a network scanner.

• Using a network scanner, check outbound connections from the system to an outside host and verify
that unwanted connections do not find their way out.

152

Appendix

FIXME: this procedure considers service hardening but not system hardening at the user level, include
information regarding checking user permissions, SETUID files and freezing changes in the system using
the ext2 file system.

Configuration checklist
This appendix briefly reiterates points from other sections in this manual in a condensed checklist format.
This is intended as a quick summary for someone who has already read the manual. There are other good
checklists available, including Kurt Seifried's http://seifried.org/security/os/linux/20020324-securing-lin-
ux-step-by-step.html and http://www.cert.org/tech_tips/usc20_full.html.

FIXME: This is based on v1.4 of the manual and might need to be updated.

• Limit physical access and booting capabilities

• Enable a password in the BIOS.

• Disable floppy/cdrom/... booting in the system's BIOS.

• Set a LILO or GRUB password (/etc/lilo.conf or /boot/grub/menu.lst, respectively);
check that the LILO or GRUB configuration file is read-protected.

• Partitioning

• Separate user-writable data, non-system data, and rapidly changing run-time data to their own par-
titions

• Set nosuid,noexec,nodev mount options in /etc/fstab on ext2/3 partitions that should not
hold binaries such as /home or /tmp.

• Password hygiene and login security

• Set a good root password

• Install and use PAM

• Add MD5 support to PAM and make sure that (generally speaking) entries in /etc/pam.d/ files
which grant access to the machine have the second field in the pam.d file set to requisite or
required.

• Tweak /etc/pam.d/login so as to only permit local root logins.

• Also mark authorized tty:s in /etc/security/access.conf and generally set up this file
to limit root logins as much as possible.

• Add pam_limits.so if you want to set per-user limits

• Tweak /etc/pam.d/passwd: set minimum length of passwords higher (6 characters maybe)
and enable MD5

• Add group wheel to /etc/group if desired; add pam_wheel.so group=wheel entry to /etc/
pam.d/su

• For custom per-user controls, use pam_listfile.so entries where appropriate

• Have an /etc/pam.d/other file and set it up with tight security

153

http://seifried.org/security/os/linux/20020324-securing-linux-step-by-step.html
http://seifried.org/security/os/linux/20020324-securing-linux-step-by-step.html
http://www.cert.org/tech_tips/usc20_full.html

Appendix

• Set up limits in /etc/security/limits.conf (note that /etc/limits is not used if you
are using PAM)

• Tighten up /etc/login.defs; also, if you enabled MD5 and/or PAM, make sure you make the
corresponding changes here, too

• Tighten up /etc/pam.d/login

• Disable root ftp access in /etc/ftpusers

• Disable network root login; use su(1) or sudo(1). (consider installing sudo)

• Use PAM to enforce additional constraints on logins?

• Other local security issues

• Kernel tweaks (see the section called “Configuring kernel network features”)

• Kernel patches (see the section called “Adding kernel patches”)

• Tighten up log file permissions (/var/log/{last,fail}log, Apache logs)

• Verify that SETUID checking is enabled in /etc/checksecurity.conf

• Consider making some log files append-only and configuration files immutable using chattr (ext2/3
file systems only)

• Set up file integrity (see the section called “Checking file system integrity”). Install debsums

• Log everything to a local printer?

• Burn your configuration on a boot-able CD and boot off that?

• Disable kernel modules?

• Limit network access

• Install and configure ssh (suggest PermitRootLogin No in /etc/ssh/sshd_config, Per-
mitEmptyPasswords No; note other suggestions in text also)

• Disable or remove in.telnetd, if installed

• Generally, disable gratuitous services in /etc/inetd.conf using update-inetd --disable (or dis-
able inetd altogether, or use a replacement such as xinetd or rlinetd)

• Disable other gratuitous network services; ftp, DNS, WWW etc should not be running if you do not
need them and monitor them regularly. In most cases mail should be running but configured for local
delivery only.

• For those services which you do need, do not just use the most common programs, look for more
secure versions shipped with Debian (or from other sources). Whatever you end up running, make
sure you understand the risks.

• Set up chroot jails for outside users and daemons.

• Configure firewall and tcpwrappers (i.e. hosts_access(5)); note trick for /etc/hosts.deny in
text.

154

Appendix

• If you run ftp, set up your ftpd server to always run chroot'ed to the user's home directory

• If you run X, disable xhost authentication and go with ssh instead; better yet, disable remote X if
you can (add -nolisten tcp to the X command line and turn off XDMCP in /etc/X11/xdm/xdm-
config by setting the requestPort to 0)

• Disable remote access to printers

• Tunnel any IMAP or POP sessions through SSL or ssh; install stunnel if you want to provide this
service to remote mail users

• Set up a log host and configure other machines to send logs to this host (/etc/syslog.conf)

• Secure BIND, Sendmail, and other complex daemons (run in a chroot jail; run as a non-root pseu-
do-user)

• Install tiger or a similar network intrusion detection tool.

• Install snort or a similar network intrusion detection tool.v

• Do without NIS and RPC if you can (disable portmap).

• Policy issues

• Educate users about the whys and hows of your policies. When you have prohibited something which
is regularly available on other systems, provide documentation which explains how to accomplish
similar results using other, more secure means.

• Prohibit use of protocols which use clear-text passwords (telnet, rsh and friends; ftp, imap, http, ...).

• Prohibit programs which use SVGAlib.

• Use disk quotas.

• Keep informed about security issues

• Subscribe to security mailing lists

• Configure apt for security updates -- add to /etc/apt/sources.list an entry (or entries) for
http://security.debian.org/

• Also remember to periodically run apt-get update ; apt-get upgrade (perhaps install as a cron job?)
as explained in the section called “Execute a security update”.

Setting up a stand-alone IDS
You can easily set up a dedicated Debian system as a stand-alone Intrusion Detection System using snort
and a web-based interface to analyse the intrusion detection alerts:

• Install a base Debian system and select no additional packages.

• Install one of the Snort versions with database support and configure the IDS to log alerts into the
database.

• Download and install BASE (Basic Analysis and Security Engine), or ACID (Analysis Console for
Intrusion Databases). Configure it to use the same database than Snort.

155

Appendix

• Download and install the necessary packages1.

BASE is currently packaged for Debian in acidbase and ACID is packaged as acidlab2. Both provide a
graphical WWW interface to Snort's output.

Besides the base installation you will also need a web server (such as apache), a PHP interpreter and a
relational database (such postgresql or mysql) where Snort will store its alerts.

This system should be set up with at least two interfaces: one interface connected to a management LAN
(for accessing the results and maintaining the system), and one interface with no IP address attached to
the network segment being analyzed. You should configure the web server to listen only on the interface
connected to the management LAN.

You should configure both interfaces in the standard Debian /etc/network/interfaces configu-
ration file. One (the management LAN) address can be configured as you would normally do. The other
interface needs to be configured so that it is started up when the system boots, but with no interface address.
You can use the following interface definition:

auto eth0
iface eth0 inet manual
 up ifconfig $IFACE 0.0.0.0 up
 up ip link set $IFACE promisc on
 down ip link set $IFACE promisc off
 down ifconfig $IFACE down

The above configures an interface to read all the traffic on the network in a stealth-type configuration. This
prevents the NIDS system to be a direct target in a hostile network since the sensors have no IP address
on the network. Notice, however, that there have been known bugs over time in sensors part of NIDS (for
example see https://lists.debian.org/debian-security-announce/2003/msg00087.html related to Snort) and
remote buffer overflows might even be triggered by network packet processing.

You might also want to read the http://www.faqs.org/docs/Linux-HOWTO/Snort-Statistics-HOWTO.html
and the documentation available at the https://www.snort.org/#documents.

Setting up a bridge firewall
This information was contributed by Francois Bayart in order to help users set up a Linux bridge/firewall
with the 2.4.x kernel and iptables. Kernel patches are no more needed as the code was made standard part
of the Linux kernel distribution.

To configure the kernel with necessary support, run make menuconfig or make xconfig. In the
section Networking options, enable the following options:

[*] Network packet filtering (replaces ipchains)
[] Network packet filtering debugging (NEW)
<*> 802.1d Ethernet Bridging
[*] netfilter (firewalling) support (NEW)

Caution: you must disable this if you want to apply some firewalling rules or else iptables will not work:

1 Typically the needed packages will be installed through the dependencies
2 It can also be downloaded from http://www.cert.org/kb/acid/, http://acidlab.sourceforge.net or http://www.andrew.cmu.edu/~rdanyliw/snort/.

156

https://lists.debian.org/debian-security-announce/2003/msg00087.html
http://www.faqs.org/docs/Linux-HOWTO/Snort-Statistics-HOWTO.html
https://www.snort.org/#documents
http://www.cert.org/kb/acid/
http://acidlab.sourceforge.net
http://www.andrew.cmu.edu/~rdanyliw/snort/

Appendix

[] Network packet filtering debugging (NEW)

Next, add the correct options in the section IP: Netfilter Configuration. Then, compile and install the
kernel. If you want to do it the Debian way, install kernel-package and run make-kpkg to create a custom
Debian kernel package you can install on your server using dpkg. Once the new kernel is compiled and
installed, install the bridge-utils package.

Once these steps are complete, you can complete the configuration of your bridge. The next section presents
two different possible configurations for the bridge, each with a hypothetical network map and the nec-
essary commands.

A bridge providing NAT and firewall capabilities
The first configuration uses the bridge as a firewall with network address translation (NAT) that protects
a server and internal LAN clients. A diagram of the network configuration is shown below:

Internet ---- router (62.3.3.25) ---- bridge (62.3.3.26 gw 62.3.3.25 / 192.168.0.1)
 |
 |
 |---- WWW Server (62.3.3.27 gw 62.3.3.25)
 |
 |
 LAN --- Zipowz (192.168.0.2 gw 192.168.0.1)

The following commands show how this bridge can be configured.

Create the interface br0
/usr/sbin/brctl addbr br0

Add the Ethernet interface to use with the bridge
/usr/sbin/brctl addif br0 eth0
/usr/sbin/brctl addif br0 eth1

Start up the Ethernet interface
/sbin/ifconfig eth0 0.0.0.0
/sbin/ifconfig eth1 0.0.0.0

Configure the bridge ethernet
The bridge will be correct and invisible (transparent firewall).
It's hidden in a traceroute and you keep your real gateway on the
other computers. Now if you want you can config a gateway on your
bridge and choose it as your new gateway for the other computers.

/sbin/ifconfig br0 62.3.3.26 netmask 255.255.255.248 broadcast 62.3.3.31

I have added this internal IP to create my NAT
ip addr add 192.168.0.1/24 dev br0
/sbin/route add default gw 62.3.3.25

A bridge providing firewall capabilities
A second possible configuration is a system that is set up as a transparent firewall for a LAN with a public
IP address space.

157

Appendix

Internet ---- router (62.3.3.25) ---- bridge (62.3.3.26)
 |
 |
 |---- WWW Server (62.3.3.28 gw 62.3.3.25)
 |
 |
 |---- Mail Server (62.3.3.27 gw 62.3.3.25)

The following commands show how this bridge can be configured.

Create the interface br0
/usr/sbin/brctl addbr br0

Add the Ethernet interface to use with the bridge
/usr/sbin/brctl addif br0 eth0
/usr/sbin/brctl addif br0 eth1

Start up the Ethernet interface
/sbin/ifconfig eth0 0.0.0.0
/sbin/ifconfig eth1 0.0.0.0

Configure the bridge Ethernet
The bridge will be correct and invisible (transparent firewall).
It's hidden in a traceroute and you keep your real gateway on the
other computers. Now if you want you can config a gateway on your
bridge and choose it as your new gateway for the other computers.

/sbin/ifconfig br0 62.3.3.26 netmask 255.255.255.248 broadcast 62.3.3.31

If you traceroute the Linux Mail Server, you won't see the bridge. If you want access to the bridge with
ssh, you must have a gateway or you must first connect to another server, such as the "Mail Server", and
then connect to the bridge through the internal network card.

Basic IPtables rules
This is an example of the basic rules that could be used for either of these setups.

Example B.1. Basic Iptables rules

iptables -F FORWARD
iptables -P FORWARD DROP
iptables -A FORWARD -s 0.0.0.0/0.0.0.0 -d 0.0.0.0/0.0.0.0 -m state --state INVALID -j DROP
iptables -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

Some funny rules but not in a classic Iptables sorry ...
Limit ICMP
iptables -A FORWARD -p icmp -m limit --limit 4/s -j ACCEPT
Match string, a good simple method to block some VIRUS very quickly
iptables -I FORWARD -j DROP -p tcp -s 0.0.0.0/0 -m string --string "cmd.exe"

Block all MySQL connection just to be sure

158

Appendix

iptables -A FORWARD -p tcp -s 0/0 -d 62.3.3.0/24 --dport 3306 -j DROP

Linux Mail Server Rules

Allow FTP-DATA (20), FTP (21), SSH (22)
iptables -A FORWARD -p tcp -s 0.0.0.0/0 -d 62.3.3.27/32 --dport 20:22 -j ACCEPT

Allow the Mail Server to connect to the outside
Note: This is *not* needed for the previous connections
(remember: stateful filtering) and could be removed.
iptables -A FORWARD -p tcp -s 62.3.3.27/32 -d 0/0 -j ACCEPT

WWW Server Rules

Allow HTTP (80) connections with the WWW server
iptables -A FORWARD -p tcp -s 0.0.0.0/0 -d 62.3.3.28/32 --dport 80 -j ACCEPT

Allow HTTPS (443) connections with the WWW server
iptables -A FORWARD -p tcp -s 0.0.0.0/0 -d 62.3.3.28/32 --dport 443 -j ACCEPT

Allow the WWW server to go out
Note: This is *not* needed for the previous connections
(remember: stateful filtering) and could be removed.
iptables -A FORWARD -p tcp -s 62.3.3.28/32 -d 0/0 -j ACCEPT

Sample script to change the default Bind in-
stallation.

This script automates the procedure for changing the bind version 8 name server's default installation so
that it does not run as the superuser. Notice that bind version 9 in Debian already does this by default 3 ,
and you are much better using that version than bind version 8.

This script is here for historical purposes and to show how you can automate this kind of changes sys-
tem-wide. The script will create the user and groups defined for the name server and will modify both /
etc/default/bind and /etc/init.d/bind so that the program will run with that user. Use with
extreme care since it has not been tested thoroughly.

You can also create the users manually and use the patch available for the default init.d script attached to
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=157245.

 #!/bin/sh
 # Change the default Debian bind v8 configuration to have it run
 # with a non-root user and group.
 #
 # DO NOT USER this with version 9, use debconf for configure this instead
 #
 # WARN: This script has not been tested thoroughly, please
 # verify the changes made to the INITD script

 # (c) 2002 Javier Fernandez-Sanguino Pena

3 Since version 9.2.1-5. That is, since Debian release sarge.

159

http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=157245

Appendix

 #
 # This program is free software; you can redistribute it and/or modify
 # it under the terms of the GNU General Public License as published by
 # the Free Software Foundation; either version 1, or (at your option)
 # any later version.
 #
 # This program is distributed in the hope that it will be useful,
 # but WITHOUT ANY WARRANTY; without even the implied warranty of
 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 # GNU General Public License for more details.
 #
 # Please see the file `COPYING' for the complete copyright notice.
 #

 restore() {
 # Just in case, restore the system if the changes fail
 echo "WARN: Restoring to the previous setup since I'm unable to properly change it."
 echo "WARN: Please check the $INITDERR script."
 mv $INITD $INITDERR
 cp $INITDBAK $INITD
 }

 USER=named
 GROUP=named
 INITD=/etc/init.d/bind
 DEFAULT=/etc/default/bind
 INITDBAK=$INITD.preuserchange
 INITDERR=$INITD.changeerror
 AWKS="awk ' /\/usr\/sbin\/ndc reload/ { print \"stop; sleep 2; start;\"; noprint = 1; } /\\\\$/ { if (noprint != 0) { noprint = noprint + 1;} } /^.*$/ { if (noprint != 0) { noprint = noprint - 1; } else { print \$0; } } '"

 [`id -u` -ne 0] && {
 echo "This program must be run by the root user"
 exit 1
 }

 RUNUSER=`ps eo user,fname |grep named |cut -f 1 -d " "`

 if ["$RUNUSER" = "$USER"]
 then
 echo "WARN: The name server running daemon is already running as $USER"
 echo "ERR: This script will not do any changes to your setup."
 exit 1
 fi
 if [! -f "$INITD"]
 then
 echo "ERR: This system does not have $INITD (which this script tries to change)"
 RUNNING=`ps eo fname |grep named`
 [-z "$RUNNING"] && \
 echo "ERR: In fact the name server daemon is not even running (is it installed?)"
 echo "ERR: No changes will be made to your system"
 exit 1
 fi

160

Appendix

 # Check if there are options already setup
 if [-e "$DEFAULT"]
 then
 if grep -q ^OPTIONS $DEFAULT; then
 echo "ERR: The $DEFAULT file already has options set."
 echo "ERR: No changes will be made to your system"
 fi
 fi

 # Check if named group exists
 if [-z "`grep $GROUP /etc/group`"]
 then
 echo "Creating group $GROUP:"
 addgroup $GROUP
 else
 echo "WARN: Group $GROUP already exists. Will not create it"
 fi
 # Same for the user
 if [-z "`grep $USER /etc/passwd`"]
 then
 echo "Creating user $USER:"
 adduser --system --home /home/$USER \
 --no-create-home --ingroup $GROUP \
 --disabled-password --disabled-login $USER
 else
 echo "WARN: The user $USER already exists. Will not create it"
 fi

 # Change the init.d script

 # First make a backup (check that there is not already
 # one there first)
 if [! -f $INITDBAK]
 then
 cp $INITD $INITDBAK
 fi

 # Then use it to change it
 cat $INITDBAK |
 eval $AWKS > $INITD

 # Now put the options in the /etc/default/bind file:
 cat >>$DEFAULT <<EOF
Make bind run with the user we defined
OPTIONS="-u $USER -g $GROUP"
EOF

 echo "WARN: The script $INITD has been changed, trying to test the changes."
 echo "Restarting the named daemon (check for errors here)."

 $INITD restart
 if [$? -ne 0]
 then
 echo "ERR: Failed to restart the daemon."

161

Appendix

 restore
 exit 1
 fi

 RUNNING=`ps eo fname |grep named`
 if [-z "$RUNNING"]
 then
 echo "ERR: Named is not running, probably due to a problem with the changes."
 restore
 exit 1
 fi

 # Check if it's running as expected
 RUNUSER=`ps eo user,fname |grep named |cut -f 1 -d " "`

 if ["$RUNUSER" = "$USER"]
 then
 echo "All has gone well, named seems to be running now as $USER."
 else
 echo "ERR: The script failed to automatically change the system."
 echo "ERR: Named is currently running as $RUNUSER."
 restore
 exit 1
 fi

 exit 0

The previous script, run on Woody's (Debian 3.0) custom bind (version 8), will modify the initd file after
creating the 'named' user and group and will

Security update protected by a firewall
After a standard installation, a system may still have some security vulnerabilities. Unless you can down-
load updates for the vulnerable packages on another system (or you have mirrored security.debian.org for
local use), the system will have to be connected to the Internet for the downloads.

However, as soon as you connect to the Internet you are exposing this system. If one of your local services
is vulnerable, you might be compromised even before the update is finished! This may seem paranoid but,
in fact, analysis from the http://www.honeynet.org has shown that systems can be compromised in less
than three days, even if the system is not publicly known (i.e., not published in DNS records).

When doing an update on a system not protected by an external system like a firewall, it is possible to
properly configure your local firewall to restrict connections involving only the security update itself.
The example below shows how to set up such local firewall capabilities, which allow connections from
security.debian.org only, logging all others.

The following example can be use to setup a restricted firewall ruleset. Run this commands from a local
console (not a remote one) to reduce the chances of locking yourself out of the system.

 # iptables -F
 # iptables -L
 Chain INPUT (policy ACCEPT)
 target prot opt source destination

162

http://www.honeynet.org

Appendix

 Chain FORWARD (policy ACCEPT)
 target prot opt source destination

 Chain OUTPUT (policy ACCEPT)
 target prot opt source destination
 # iptables -A OUTPUT -d security.debian.org --dport 80 -j ACCEPT
 # iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
 # iptables -A INPUT -p icmp -j ACCEPT
 # iptables -A INPUT -j LOG
 # iptables -A OUTPUT -j LOG
 # iptables -P INPUT DROP
 # iptables -P FORWARD DROP
 # iptables -P OUTPUT DROP
 # iptables -L
 Chain INPUT (policy DROP)
 target prot opt source destination
 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED
 ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0
 LOG all -- anywhere anywhere LOG level warning

 Chain FORWARD (policy DROP)
 target prot opt source destination

 Chain OUTPUT (policy DROP)
 target prot opt source destination
 ACCEPT 80 -- anywhere security.debian.org
 LOG all -- anywhere anywhere LOG level warning

Note: Using a DROP policy in the INPUT chain is the most correct thing to do, but be very careful when
doing this after flushing the chain from a remote connection. When testing firewall rulesets from a remote
location it is best if you run a script with the firewall ruleset (instead of introducing the ruleset line by line
through the command line) and, as a precaution, keep a backdoor4

Of course, you should disable any backdoors before getting the system into production. configured so that
you can re-enable access to the system if you make a mistake. That way there would be no need to go to
a remote location to fix a firewall ruleset that blocks you.

4 Such as knockd. Alternatively, you can open a different console and have the system ask for confirmation that there is somebody on the other side,
and reset the firewall chain if no confirmation is given. The following test script could be of use:

#!/bin/bash

while true; do
 read -n 1 -p "Are you there? " -t 30 ayt
 if [-z "$ayt"] ; then
 break
 fi
done

Reset the firewall chain, user is not available
echo
echo "Resetting firewall chain!"
iptables -F
iptables -P INPUT ACCEPT
iptables -P FORWARD ACCEPT
iptables -P OUTPUT ACCEPT
exit 1

163

Appendix

FIXME: This needs DNS to be working properly since it is required for security.debian.org to work. You
can add security.debian.org to /etc/hosts but now it is a CNAME to several hosts (there is more than one
security mirror)

FIXME: this will only work with HTTP URLs since ftp might need the ip_conntrack_ftp module, or use
passive mode.

Chroot environment for SSH
Creating a restricted environment for SSH is a tough job due to its dependencies and the fact that, unlike
other servers, SSH provides a remote shell to users. Thus, you will also have to consider the applications
users will be allowed to use in the environment.

You have two options to setup a restricted remote shell:

• Chrooting the ssh users, by properly configuring the ssh daemon you can ask it to chroot a user after
authentication just before it is provided a shell. Each user can have their own environment.

• Chrooting the ssh server, since you chroot the ssh application itself all users are chrooted to the defined
environment.

The first option has the advantage of making it possible to have both non-chrooted and chrooted users,
if you don't introduce any setuid application in the user's chroots it is more difficult to break out of it.
However, you might need to setup individual chroots for each user and it is more difficult to setup (as it
requires cooperation from the SSH server). The second option is more easy to setup, and protects from an
exploitation of the ssh server itself (since it's also in the chroot) but it will have the limitation that all users
will share the same chroot environment (you cannot setup a per-user chroot environment).

Chrooting the ssh users
You can setup the ssh server so that it will chroot a set of defined users into a shell with a limited set of
applications available.

Using libpam-chroot

Probably the easiest way is to use the libpam-chroot package provided in Debian. Once you install it you
need to:

• Modify /etc/pam.d/ssh to use this PAM module, add as its last line5:

session required pam_chroot.so

• set a proper chroot environment for the user. You can try using the scripts available at /usr/share/
doc/libpam-chroot/examples/, use the makejail6 program or setup a minimum Debian envi-
ronment with debootstrap. Make sure the environment includes the needed devices 7.

5 You can use the debug option to have it send the progress of the module to the authpriv.notice facility
6 You can create a very limited bash environment with the following python definition for makejail, just create the directory /var/ch-
roots/users/foo and a file with the following contents and call it bash.py:

chroot="/var/chroots/users/foo"
cleanJailFirst=1
testCommandsInsideJail=["bash ls"]

164

Appendix

• Configure /etc/security/chroot.conf so that the users you determine are chrooted to the
directory you setup previously. You might want to have independent directories for different users so
that they will not be able to see neither the whole system nor each other's.

• Configure SSH: Depending on your OpenSSH version the chroot environment might work straight of
the box or not. Since 3.6.1p2 the do_pam_session() function is called after sshd has dropped privileges,
since chroot() needs root priviledges it will not work with Privilege separation on. In newer OpenSSH
versions, however, the PAM code has been modified and do_pam_session is called before dropping
priviledges so it will work even with Privilege separation is on. If you have to disable it modify /etc/
ssh/sshd_config like this:

UsePrivilegeSeparation no

Notice that this will lower the security of your system since the OpenSSH server will then run as root
user. This means that if a remote attack is found against OpenSSH an attacker will get root privileges
instead of sshd, thus compromising the whole system. 8

If you don't disable Privilege Separation you will need an /etc/passwd which includes the user's UID
inside the chroot for Privilege Separation to work properly.

If you have Privilege Separation set to yes and your OpenSSH version does not behave properly you will
need to disable it. If you don't, users that try to connect to your server and would be chrooted by this
module will see this:

$ ssh -l user server
user@server's password:
Connection to server closed by remote host.
Connection to server closed.

This is because the ssh daemon, which is running as 'sshd', is not be able to make the chroot() system call.
To disable Privilege separation you have to modify the /etc/ssh/sshd_config configuration file
as described above.

Notice that if any of the following is missing the users will not be able to logon to the chroot:

• The /proc filesystem needs to be mounted in the users' chroot.

• The necessary /dev/pts/ devices need to exist. If the files are generated by your running kernel
automatically then you have to manually create them on the chroot's /dev/.

• The user's home directory has to exist in the chroot, otherwise the ssh daemon will not continue.

You can debug all these issues if you use the debug keyword in the /etc/pam.d/ssh PAM definition.
If you encounter issues you might find it useful to enable the debugging mode on the ssh client too.

And then run makejail bash.py to create the user environment at /var/chroots/users/foo. To test the environment run:

chroot /var/chroots/users/foo/ ls
bin dev etc lib proc sbin usr
7 In some occasions you might need the /dev/ptmx and /dev/pty* devices and the /dev/pts/ subdirectory. Running MAKEDEV in the
/dev directory of the chrooted environment should be sufficient to create them if they do not exist. If you are using kernels (version 2.6) which
dynamically create device files you will need to create the /dev/pts/ files yourself and grant them the proper privileges.
8 If you are using a kernel that implements Mandatory Access Control (RSBAC/SElinux) you can avoid changing this configuration just by granting
the sshd user privileges to make the chroot() system call.

165

Appendix

Note: This information is also available (and maybe more up to date) in /usr/share/doc/lib-
pam-chroot/README.Debian.gz, please review it for updated information before taking the above
steps.

Patching the ssh server

Debian's sshd does not allow restriction of a user's movement through the server, since it lacks the ch-
root function that the commercial program sshd2 includes (using 'ChrootGroups' or 'ChrootUsers', see
sshd2_config(5)). However, there is a patch available to add this functionality available from http://ch-
rootssh.sourceforge.net (requested and available in http://bugs.debian.org/139047 in Debian). The patch
may be included in future releases of the OpenSSH package. Emmanuel Lacour has ssh deb packages for
sarge with this feature. They are available at http://debian.home-dn.net/sarge/ssh/. Notice that those might
not be up to date so completing the compilation step is recommended.

After applying the patch, modify /etc/passwd by changing the home path of the users (with the special
/./ token):

 joeuser:x:1099:1099:Joe Random User:/home/joe/./:/bin/bash

This will restrict both remote shell access, as well as remote copy through the ssh channel.

Make sure to have all the needed binaries and libraries in the chroot'ed path for users. These files should be
owned by root to avoid tampering by the user (so as to exit the chroot'ed jailed). A sample might include:

./bin:
total 660
drwxr-xr-x 2 root root 4096 Mar 18 13:36 .
drwxr-xr-x 8 guest guest 4096 Mar 15 16:53 ..
-r-xr-xr-x 1 root root 531160 Feb 6 22:36 bash
-r-xr-xr-x 1 root root 43916 Nov 29 13:19 ls
-r-xr-xr-x 1 root root 16684 Nov 29 13:19 mkdir
-rwxr-xr-x 1 root root 23960 Mar 18 13:36 more
-r-xr-xr-x 1 root root 9916 Jul 26 2001 pwd
-r-xr-xr-x 1 root root 24780 Nov 29 13:19 rm
lrwxrwxrwx 1 root root 4 Mar 30 16:29 sh -> bash

./etc:
total 24
drwxr-xr-x 2 root root 4096 Mar 15 16:13 .
drwxr-xr-x 8 guest guest 4096 Mar 15 16:53 ..
-rw-r--r-- 1 root root 54 Mar 15 13:23 group
-rw-r--r-- 1 root root 428 Mar 15 15:56 hosts
-rw-r--r-- 1 root root 44 Mar 15 15:53 passwd
-rw-r--r-- 1 root root 52 Mar 15 13:23 shells

./lib:
total 1848
drwxr-xr-x 2 root root 4096 Mar 18 13:37 .
drwxr-xr-x 8 guest guest 4096 Mar 15 16:53 ..
-rwxr-xr-x 1 root root 92511 Mar 15 12:49 ld-linux.so.2
-rwxr-xr-x 1 root root 1170812 Mar 15 12:49 libc.so.6

166

http://chrootssh.sourceforge.net
http://chrootssh.sourceforge.net
http://bugs.debian.org/139047
http://debian.home-dn.net/sarge/ssh/

Appendix

-rw-r--r-- 1 root root 20900 Mar 15 13:01 libcrypt.so.1
-rw-r--r-- 1 root root 9436 Mar 15 12:49 libdl.so.2
-rw-r--r-- 1 root root 248132 Mar 15 12:48 libncurses.so.5
-rw-r--r-- 1 root root 71332 Mar 15 13:00 libnsl.so.1
-rw-r--r-- 1 root root 34144 Mar 15 16:10
libnss_files.so.2
-rw-r--r-- 1 root root 29420 Mar 15 12:57 libpam.so.0
-rw-r--r-- 1 root root 105498 Mar 15 12:51 libpthread.so.0
-rw-r--r-- 1 root root 25596 Mar 15 12:51 librt.so.1
-rw-r--r-- 1 root root 7760 Mar 15 12:59 libutil.so.1
-rw-r--r-- 1 root root 24328 Mar 15 12:57 libwrap.so.0

./usr:
total 16
drwxr-xr-x 4 root root 4096 Mar 15 13:00 .
drwxr-xr-x 8 guest guest 4096 Mar 15 16:53 ..
drwxr-xr-x 2 root root 4096 Mar 15 15:55 bin
drwxr-xr-x 2 root root 4096 Mar 15 15:37 lib

./usr/bin:
total 340
drwxr-xr-x 2 root root 4096 Mar 15 15:55 .
drwxr-xr-x 4 root root 4096 Mar 15 13:00 ..
-rwxr-xr-x 1 root root 10332 Mar 15 15:55 env
-rwxr-xr-x 1 root root 13052 Mar 15 13:13 id
-r-xr-xr-x 1 root root 25432 Mar 15 12:40 scp
-rwxr-xr-x 1 root root 43768 Mar 15 15:15 sftp
-r-sr-xr-x 1 root root 218456 Mar 15 12:40 ssh
-rwxr-xr-x 1 root root 9692 Mar 15 13:17 tty

./usr/lib:
total 852
drwxr-xr-x 2 root root 4096 Mar 15 15:37 .
drwxr-xr-x 4 root root 4096 Mar 15 13:00 ..
-rw-r--r-- 1 root root 771088 Mar 15 13:01
libcrypto.so.0.9.6
-rw-r--r-- 1 root root 54548 Mar 15 13:00 libz.so.1
-rwxr-xr-x 1 root root 23096 Mar 15 15:37 sftp-server

Chrooting the ssh server
If you create a chroot which includes the SSH server files in, for example /var/chroot/ssh, you
would start the ssh server chroot'ed with this command:

 # chroot /var/chroot/ssh /sbin/sshd -f /etc/sshd_config

That would make startup the sshd daemon inside the chroot. In order to do that you have to first prepare the
contents of the /var/chroot/ssh directory so that it includes both the SSH server and all the utilities
that the users connecting to that server might need. If you are doing this you should make certain that
OpenSSH uses Privilege Separation (which is the default) having the following line in the configuration
file /etc/ssh/sshd_config:

167

Appendix

UsePrivilegeSeparation yes

That way the remote daemon will do as few things as possible as the root user so even if there is a bug
in it it will not compromise the chroot. Notice that, unlike the case in which you setup a per-user chroot,
the ssh daemon is running in the same chroot as the users so there is at least one potential process running
as root which could break out of the chroot.

Notice, also, that in order for SSH to work in that location, the partition where the chroot directory resides
cannot be mounted with the nodev option. If you use that option, then you will get the following error:
PRNG is not seeded, because /dev/urandom does not work in the chroot.

Setup a minimal system (the really easy way)

You can use debootstrap to setup a minimal environment that just includes the ssh server. In order to
do this you just have to create a chroot as described in the http://www.debian.org/doc/manuals/refer-
ence/ch09#_chroot_system document. This method is bound to work (you will get all the necessary com-
ponentes for the chroot) but at the cost of disk space (a minimal installation of Debian will amount to
several hundred megabytes). This minimal system might also include setuid files that a user in the chroot
could use to break out of the chroot if any of those could be use for a privilege escalation.

Automatically making the environment (the easy way)

You can easily create a restricted environment with the makejail package, since it automatically takes care
of tracing the server daemon (with strace), and makes it run under the restricted environment.

The advantage of programs that automatically generate chroot environments is that they are capable of
copying any package to the chroot environment (even following the package's dependencies and making
sure it's complete). Thus, providing user applications is easier.

To set up the environment using makejail's provided examples, just create /var/chroot/sshd and
use the command:

 # makejail /usr/share/doc/makejail/examples/sshd.py

This will setup the chroot in the /var/chroot/sshd directory. Notice that this chroot will not fully
work unless you:

•
Mount the procfs filesystem in /var/chroot/sshd/proc. Makejail will mount it for you but if
the system reboots you need to remount it running:

mount -t proc proc /var/chroot/sshd/proc

You can also have it be mounted automatically by editing /etc/fstab and including this line:

proc-ssh /var/chroot/sshd/proc proc none 0 0

• Have syslog listen to the device /dev/log inside the chroot. In order to do this you have modify /
etc/default/syslogd and add -a /var/chroot/sshd/dev/log to the SYSLOGD variable definition.

Read the sample file to see what other changes need to be made to the environment. Some of these changes,
such as copying user's home directories, cannot be done automatically. Also, limit the exposure of sensitive

168

http://www.debian.org/doc/manuals/reference/ch09#_chroot_system
http://www.debian.org/doc/manuals/reference/ch09#_chroot_system

Appendix

information by only copying the data from a given number of users from the files /etc/shadow or /
etc/group. Notice that if you are using Privilege Separation the sshd user needs to exist in those files.

The following sample environment has been (slightly) tested in Debian 3.0 and is built with the configu-
ration file provided in the package and includes the fileutils package:

.
|-- bin
| |-- ash
| |-- bash
| |-- chgrp
| |-- chmod
| |-- chown
| |-- cp
| |-- csh -> /etc/alternatives/csh
| |-- dd
| |-- df
| |-- dir
| |-- fdflush
| |-- ksh
| |-- ln
| |-- ls
| |-- mkdir
| |-- mknod
| |-- mv
| |-- rbash -> bash
| |-- rm
| |-- rmdir
| |-- sh -> bash
| |-- sync
| |-- tcsh
| |-- touch
| |-- vdir
| |-- zsh -> /etc/alternatives/zsh
| `-- zsh4
|-- dev
| |-- null
| |-- ptmx
| |-- pts
| |-- ptya0
(...)
| |-- tty
| |-- tty0
(...)
| `-- urandom
|-- etc
| |-- alternatives
| | |-- csh -> /bin/tcsh
| | `-- zsh -> /bin/zsh4
| |-- environment
| |-- hosts
| |-- hosts.allow
| |-- hosts.deny

169

Appendix

| |-- ld.so.conf
| |-- localtime -> /usr/share/zoneinfo/Europe/Madrid
| |-- motd
| |-- nsswitch.conf
| |-- pam.conf
| |-- pam.d
| | |-- other
| | `-- ssh
| |-- passwd
| |-- resolv.conf
| |-- security
| | |-- access.conf
| | |-- chroot.conf
| | |-- group.conf
| | |-- limits.conf
| | |-- pam_env.conf
| | `-- time.conf
| |-- shadow
| |-- shells
| `-- ssh
| |-- moduli
| |-- ssh_host_dsa_key
| |-- ssh_host_dsa_key.pub
| |-- ssh_host_rsa_key
| |-- ssh_host_rsa_key.pub
| `-- sshd_config
|-- home
| `-- userX
|-- lib
| |-- ld-2.2.5.so
| |-- ld-linux.so.2 -> ld-2.2.5.so
| |-- libc-2.2.5.so
| |-- libc.so.6 -> libc-2.2.5.so
| |-- libcap.so.1 -> libcap.so.1.10
| |-- libcap.so.1.10
| |-- libcrypt-2.2.5.so
| |-- libcrypt.so.1 -> libcrypt-2.2.5.so
| |-- libdl-2.2.5.so
| |-- libdl.so.2 -> libdl-2.2.5.so
| |-- libm-2.2.5.so
| |-- libm.so.6 -> libm-2.2.5.so
| |-- libncurses.so.5 -> libncurses.so.5.2
| |-- libncurses.so.5.2
| |-- libnsl-2.2.5.so
| |-- libnsl.so.1 -> libnsl-2.2.5.so
| |-- libnss_compat-2.2.5.so
| |-- libnss_compat.so.2 -> libnss_compat-2.2.5.so
| |-- libnss_db-2.2.so
| |-- libnss_db.so.2 -> libnss_db-2.2.so
| |-- libnss_dns-2.2.5.so
| |-- libnss_dns.so.2 -> libnss_dns-2.2.5.so
| |-- libnss_files-2.2.5.so
| |-- libnss_files.so.2 -> libnss_files-2.2.5.so
| |-- libnss_hesiod-2.2.5.so

170

Appendix

| |-- libnss_hesiod.so.2 -> libnss_hesiod-2.2.5.so
| |-- libnss_nis-2.2.5.so
| |-- libnss_nis.so.2 -> libnss_nis-2.2.5.so
| |-- libnss_nisplus-2.2.5.so
| |-- libnss_nisplus.so.2 -> libnss_nisplus-2.2.5.so
| |-- libpam.so.0 -> libpam.so.0.72
| |-- libpam.so.0.72
| |-- libpthread-0.9.so
| |-- libpthread.so.0 -> libpthread-0.9.so
| |-- libresolv-2.2.5.so
| |-- libresolv.so.2 -> libresolv-2.2.5.so
| |-- librt-2.2.5.so
| |-- librt.so.1 -> librt-2.2.5.so
| |-- libutil-2.2.5.so
| |-- libutil.so.1 -> libutil-2.2.5.so
| |-- libwrap.so.0 -> libwrap.so.0.7.6
| |-- libwrap.so.0.7.6
| `-- security
| |-- pam_access.so
| |-- pam_chroot.so
| |-- pam_deny.so
| |-- pam_env.so
| |-- pam_filter.so
| |-- pam_ftp.so
| |-- pam_group.so
| |-- pam_issue.so
| |-- pam_lastlog.so
| |-- pam_limits.so
| |-- pam_listfile.so
| |-- pam_mail.so
| |-- pam_mkhomedir.so
| |-- pam_motd.so
| |-- pam_nologin.so
| |-- pam_permit.so
| |-- pam_rhosts_auth.so
| |-- pam_rootok.so
| |-- pam_securetty.so
| |-- pam_shells.so
| |-- pam_stress.so
| |-- pam_tally.so
| |-- pam_time.so
| |-- pam_unix.so
| |-- pam_unix_acct.so -> pam_unix.so
| |-- pam_unix_auth.so -> pam_unix.so
| |-- pam_unix_passwd.so -> pam_unix.so
| |-- pam_unix_session.so -> pam_unix.so
| |-- pam_userdb.so
| |-- pam_warn.so
| `-- pam_wheel.so
|-- sbin
| `-- start-stop-daemon
|-- usr
| |-- bin
| | |-- dircolors

171

Appendix

| | |-- du
| | |-- install
| | |-- link
| | |-- mkfifo
| | |-- shred
| | |-- touch -> /bin/touch
| | `-- unlink
| |-- lib
| | |-- libcrypto.so.0.9.6
| | |-- libdb3.so.3 -> libdb3.so.3.0.2
| | |-- libdb3.so.3.0.2
| | |-- libz.so.1 -> libz.so.1.1.4
| | `-- libz.so.1.1.4
| |-- sbin
| | `-- sshd
| `-- share
| |-- locale
| | `-- es
| | |-- LC_MESSAGES
| | | |-- fileutils.mo
| | | |-- libc.mo
| | | `-- sh-utils.mo
| | `-- LC_TIME -> LC_MESSAGES
| `-- zoneinfo
| `-- Europe
| `-- Madrid
`-- var
 `-- run
 |-- sshd
 `-- sshd.pid

27 directories, 733 files

For Debian release 3.1 you have to make sure that the environment includes also the common files for
PAM. The following files need to be copied over to the chroot if makejail did not do it for you:

$ ls /etc/pam.d/common-*
/etc/pam.d/common-account /etc/pam.d/common-password
/etc/pam.d/common-auth /etc/pam.d/common-session

Manually creating the environment (the hard way)

It is possible to create an environment, using a trial-and-error method, by monitoring the sshd server traces
and log files in order to determine the necessary files. The following environment, contributed by José
Luis Ledesma, is a sample listing of files in a chroot environment for ssh in Debian woody (3.0): 9

.:
total 36
drwxr-xr-x 9 root root 4096 Jun 5 10:05 ./
drwxr-xr-x 11 root root 4096 Jun 3 13:43 ../

9 Notice that there are no SETUID files. This makes it more difficult for remote users to escape the chroot environment. However, it also prevents
users from changing their passwords, since the passwd program cannot modify the files /etc/passwd or /etc/shadow.

172

Appendix

drwxr-xr-x 2 root root 4096 Jun 4 12:13 bin/
drwxr-xr-x 2 root root 4096 Jun 4 12:16 dev/
drwxr-xr-x 4 root root 4096 Jun 4 12:35 etc/
drwxr-xr-x 3 root root 4096 Jun 4 12:13 lib/
drwxr-xr-x 2 root root 4096 Jun 4 12:35 sbin/
drwxr-xr-x 2 root root 4096 Jun 4 12:32 tmp/
drwxr-xr-x 2 root root 4096 Jun 4 12:16 usr/
./bin:
total 8368
drwxr-xr-x 2 root root 4096 Jun 4 12:13 ./
drwxr-xr-x 9 root root 4096 Jun 5 10:05 ../
-rwxr-xr-x 1 root root 109855 Jun 3 13:45 a2p*
-rwxr-xr-x 1 root root 387764 Jun 3 13:45 bash*
-rwxr-xr-x 1 root root 36365 Jun 3 13:45 c2ph*
-rwxr-xr-x 1 root root 20629 Jun 3 13:45 dprofpp*
-rwxr-xr-x 1 root root 6956 Jun 3 13:46 env*
-rwxr-xr-x 1 root root 158116 Jun 3 13:45 fax2ps*
-rwxr-xr-x 1 root root 104008 Jun 3 13:45 faxalter*
-rwxr-xr-x 1 root root 89340 Jun 3 13:45 faxcover*
-rwxr-xr-x 1 root root 441584 Jun 3 13:45 faxmail*
-rwxr-xr-x 1 root root 96036 Jun 3 13:45 faxrm*
-rwxr-xr-x 1 root root 107000 Jun 3 13:45 faxstat*
-rwxr-xr-x 1 root root 77832 Jun 4 11:46 grep*
-rwxr-xr-x 1 root root 19597 Jun 3 13:45 h2ph*
-rwxr-xr-x 1 root root 46979 Jun 3 13:45 h2xs*
-rwxr-xr-x 1 root root 10420 Jun 3 13:46 id*
-rwxr-xr-x 1 root root 4528 Jun 3 13:46 ldd*
-rwxr-xr-x 1 root root 111386 Jun 4 11:46 less*
-r-xr-xr-x 1 root root 26168 Jun 3 13:45 login*
-rwxr-xr-x 1 root root 49164 Jun 3 13:45 ls*
-rwxr-xr-x 1 root root 11600 Jun 3 13:45 mkdir*
-rwxr-xr-x 1 root root 24780 Jun 3 13:45 more*
-rwxr-xr-x 1 root root 154980 Jun 3 13:45 pal2rgb*
-rwxr-xr-x 1 root root 27920 Jun 3 13:46 passwd*
-rwxr-xr-x 1 root root 4241 Jun 3 13:45 pl2pm*
-rwxr-xr-x 1 root root 2350 Jun 3 13:45 pod2html*
-rwxr-xr-x 1 root root 7875 Jun 3 13:45 pod2latex*
-rwxr-xr-x 1 root root 17587 Jun 3 13:45 pod2man*
-rwxr-xr-x 1 root root 6877 Jun 3 13:45 pod2text*
-rwxr-xr-x 1 root root 3300 Jun 3 13:45 pod2usage*
-rwxr-xr-x 1 root root 3341 Jun 3 13:45 podchecker*
-rwxr-xr-x 1 root root 2483 Jun 3 13:45 podselect*
-r-xr-xr-x 1 root root 82412 Jun 4 11:46 ps*
-rwxr-xr-x 1 root root 36365 Jun 3 13:45 pstruct*
-rwxr-xr-x 1 root root 7120 Jun 3 13:45 pwd*
-rwxr-xr-x 1 root root 179884 Jun 3 13:45 rgb2ycbcr*
-rwxr-xr-x 1 root root 20532 Jun 3 13:45 rm*
-rwxr-xr-x 1 root root 6720 Jun 4 10:15 rmdir*
-rwxr-xr-x 1 root root 14705 Jun 3 13:45 s2p*
-rwxr-xr-x 1 root root 28764 Jun 3 13:46 scp*
-rwxr-xr-x 1 root root 385000 Jun 3 13:45 sendfax*
-rwxr-xr-x 1 root root 67548 Jun 3 13:45 sendpage*
-rwxr-xr-x 1 root root 88632 Jun 3 13:46 sftp*
-rwxr-xr-x 1 root root 387764 Jun 3 13:45 sh*

173

Appendix

-rws--x--x 1 root root 744500 Jun 3 13:46 slogin*
-rwxr-xr-x 1 root root 14523 Jun 3 13:46 splain*
-rws--x--x 1 root root 744500 Jun 3 13:46 ssh*
-rwxr-xr-x 1 root root 570960 Jun 3 13:46 ssh-add*
-rwxr-xr-x 1 root root 502952 Jun 3 13:46 ssh-agent*
-rwxr-xr-x 1 root root 575740 Jun 3 13:46 ssh-keygen*
-rwxr-xr-x 1 root root 383480 Jun 3 13:46 ssh-keyscan*
-rwxr-xr-x 1 root root 39 Jun 3 13:46 ssh_europa*
-rwxr-xr-x 1 root root 107252 Jun 4 10:14 strace*
-rwxr-xr-x 1 root root 8323 Jun 4 10:14 strace-graph*
-rwxr-xr-x 1 root root 158088 Jun 3 13:46 thumbnail*
-rwxr-xr-x 1 root root 6312 Jun 3 13:46 tty*
-rwxr-xr-x 1 root root 55904 Jun 4 11:46 useradd*
-rwxr-xr-x 1 root root 585656 Jun 4 11:47 vi*
-rwxr-xr-x 1 root root 6444 Jun 4 11:45 whoami*
./dev:
total 8
drwxr-xr-x 2 root root 4096 Jun 4 12:16 ./
drwxr-xr-x 9 root root 4096 Jun 5 10:05 ../
crw-r--r-- 1 root root 1, 9 Jun 3 13:43 urandom
./etc:
total 208
drwxr-xr-x 4 root root 4096 Jun 4 12:35 ./
drwxr-xr-x 9 root root 4096 Jun 5 10:05 ../
-rw------- 1 root root 0 Jun 4 11:46 .pwd.lock
-rw-r--r-- 1 root root 653 Jun 3 13:46 group
-rw-r--r-- 1 root root 242 Jun 4 11:33 host.conf
-rw-r--r-- 1 root root 857 Jun 4 12:04 hosts
-rw-r--r-- 1 root root 1050 Jun 4 11:29 ld.so.cache
-rw-r--r-- 1 root root 304 Jun 4 11:28 ld.so.conf
-rw-r--r-- 1 root root 235 Jun 4 11:27 ld.so.conf~
-rw-r--r-- 1 root root 88039 Jun 3 13:46 moduli
-rw-r--r-- 1 root root 1342 Jun 4 11:34 nsswitch.conf
drwxr-xr-x 2 root root 4096 Jun 4 12:02 pam.d/
-rw-r--r-- 1 root root 28 Jun 4 12:00 pam_smb.conf
-rw-r--r-- 1 root root 2520 Jun 4 11:57 passwd
-rw-r--r-- 1 root root 7228 Jun 3 13:48 profile
-rw-r--r-- 1 root root 1339 Jun 4 11:33 protocols
-rw-r--r-- 1 root root 274 Jun 4 11:44 resolv.conf
drwxr-xr-x 2 root root 4096 Jun 3 13:43 security/
-rw-r----- 1 root root 1178 Jun 4 11:51 shadow
-rw------- 1 root root 80 Jun 4 11:45 shadow-
-rw-r----- 1 root root 1178 Jun 4 11:48 shadow.old
-rw-r--r-- 1 root root 161 Jun 3 13:46 shells
-rw-r--r-- 1 root root 1144 Jun 3 13:46 ssh_config
-rw------- 1 root root 668 Jun 3 13:46 ssh_host_dsa_key
-rw-r--r-- 1 root root 602 Jun 3 13:46 ssh_host_dsa_key.pub
-rw------- 1 root root 527 Jun 3 13:46 ssh_host_key
-rw-r--r-- 1 root root 331 Jun 3 13:46 ssh_host_key.pub
-rw------- 1 root root 883 Jun 3 13:46 ssh_host_rsa_key
-rw-r--r-- 1 root root 222 Jun 3 13:46 ssh_host_rsa_key.pub
-rw-r--r-- 1 root root 2471 Jun 4 12:15 sshd_config
./etc/pam.d:
total 24

174

Appendix

drwxr-xr-x 2 root root 4096 Jun 4 12:02 ./
drwxr-xr-x 4 root root 4096 Jun 4 12:35 ../
lrwxrwxrwx 1 root root 4 Jun 4 12:02 other -> sshd
-rw-r--r-- 1 root root 318 Jun 3 13:46 passwd
-rw-r--r-- 1 root root 546 Jun 4 11:36 ssh
-rw-r--r-- 1 root root 479 Jun 4 12:02 sshd
-rw-r--r-- 1 root root 370 Jun 3 13:46 su
./etc/security:
total 32
drwxr-xr-x 2 root root 4096 Jun 3 13:43 ./
drwxr-xr-x 4 root root 4096 Jun 4 12:35 ../
-rw-r--r-- 1 root root 1971 Jun 3 13:46 access.conf
-rw-r--r-- 1 root root 184 Jun 3 13:46 chroot.conf
-rw-r--r-- 1 root root 2145 Jun 3 13:46 group.conf
-rw-r--r-- 1 root root 1356 Jun 3 13:46 limits.conf
-rw-r--r-- 1 root root 2858 Jun 3 13:46 pam_env.conf
-rw-r--r-- 1 root root 2154 Jun 3 13:46 time.conf
./lib:
total 8316
drwxr-xr-x 3 root root 4096 Jun 4 12:13 ./
drwxr-xr-x 9 root root 4096 Jun 5 10:05 ../
-rw-r--r-- 1 root root 1024 Jun 4 11:51 cracklib_dict.hwm
-rw-r--r-- 1 root root 214324 Jun 4 11:51 cracklib_dict.pwd
-rw-r--r-- 1 root root 11360 Jun 4 11:51 cracklib_dict.pwi
-rwxr-xr-x 1 root root 342427 Jun 3 13:46 ld-linux.so.2*
-rwxr-xr-x 1 root root 4061504 Jun 3 13:46 libc.so.6*
lrwxrwxrwx 1 root root 15 Jun 4 12:11 libcrack.so -> libcrack.so.2.7*
lrwxrwxrwx 1 root root 15 Jun 4 12:11 libcrack.so.2 -> libcrack.so.2.7*
-rwxr-xr-x 1 root root 33291 Jun 4 11:39 libcrack.so.2.7*
-rwxr-xr-x 1 root root 60988 Jun 3 13:46 libcrypt.so.1*
-rwxr-xr-x 1 root root 71846 Jun 3 13:46 libdl.so.2*
-rwxr-xr-x 1 root root 27762 Jun 3 13:46 libhistory.so.4.0*
lrwxrwxrwx 1 root root 17 Jun 4 12:12 libncurses.so.4 -> libncurses.so.4.2*
-rwxr-xr-x 1 root root 503903 Jun 3 13:46 libncurses.so.4.2*
lrwxrwxrwx 1 root root 17 Jun 4 12:12 libncurses.so.5 -> libncurses.so.5.0*
-rwxr-xr-x 1 root root 549429 Jun 3 13:46 libncurses.so.5.0*
-rwxr-xr-x 1 root root 369801 Jun 3 13:46 libnsl.so.1*
-rwxr-xr-x 1 root root 142563 Jun 4 11:49 libnss_compat.so.1*
-rwxr-xr-x 1 root root 215569 Jun 4 11:49 libnss_compat.so.2*
-rwxr-xr-x 1 root root 61648 Jun 4 11:34 libnss_dns.so.1*
-rwxr-xr-x 1 root root 63453 Jun 4 11:34 libnss_dns.so.2*
-rwxr-xr-x 1 root root 63782 Jun 4 11:34 libnss_dns6.so.2*
-rwxr-xr-x 1 root root 205715 Jun 3 13:46 libnss_files.so.1*
-rwxr-xr-x 1 root root 235932 Jun 3 13:49 libnss_files.so.2*
-rwxr-xr-x 1 root root 204383 Jun 4 11:33 libnss_nis.so.1*
-rwxr-xr-x 1 root root 254023 Jun 4 11:33 libnss_nis.so.2*
-rwxr-xr-x 1 root root 256465 Jun 4 11:33 libnss_nisplus.so.2*
lrwxrwxrwx 1 root root 14 Jun 4 12:12 libpam.so.0 -> libpam.so.0.72*
-rwxr-xr-x 1 root root 31449 Jun 3 13:46 libpam.so.0.72*
lrwxrwxrwx 1 root root 19 Jun 4 12:12 libpam_misc.so.0 ->
libpam_misc.so.0.72*
-rwxr-xr-x 1 root root 8125 Jun 3 13:46 libpam_misc.so.0.72*
lrwxrwxrwx 1 root root 15 Jun 4 12:12 libpamc.so.0 -> libpamc.so.0.72*
-rwxr-xr-x 1 root root 10499 Jun 3 13:46 libpamc.so.0.72*

175

Appendix

-rwxr-xr-x 1 root root 176427 Jun 3 13:46 libreadline.so.4.0*
-rwxr-xr-x 1 root root 44729 Jun 3 13:46 libutil.so.1*
-rwxr-xr-x 1 root root 70254 Jun 3 13:46 libz.a*
lrwxrwxrwx 1 root root 13 Jun 4 12:13 libz.so -> libz.so.1.1.3*
lrwxrwxrwx 1 root root 13 Jun 4 12:13 libz.so.1 -> libz.so.1.1.3*
-rwxr-xr-x 1 root root 63312 Jun 3 13:46 libz.so.1.1.3*
drwxr-xr-x 2 root root 4096 Jun 4 12:00 security/
./lib/security:
total 668
drwxr-xr-x 2 root root 4096 Jun 4 12:00 ./
drwxr-xr-x 3 root root 4096 Jun 4 12:13 ../
-rwxr-xr-x 1 root root 10067 Jun 3 13:46 pam_access.so*
-rwxr-xr-x 1 root root 8300 Jun 3 13:46 pam_chroot.so*
-rwxr-xr-x 1 root root 14397 Jun 3 13:46 pam_cracklib.so*
-rwxr-xr-x 1 root root 5082 Jun 3 13:46 pam_deny.so*
-rwxr-xr-x 1 root root 13153 Jun 3 13:46 pam_env.so*
-rwxr-xr-x 1 root root 13371 Jun 3 13:46 pam_filter.so*
-rwxr-xr-x 1 root root 7957 Jun 3 13:46 pam_ftp.so*
-rwxr-xr-x 1 root root 12771 Jun 3 13:46 pam_group.so*
-rwxr-xr-x 1 root root 10174 Jun 3 13:46 pam_issue.so*
-rwxr-xr-x 1 root root 9774 Jun 3 13:46 pam_lastlog.so*
-rwxr-xr-x 1 root root 13591 Jun 3 13:46 pam_limits.so*
-rwxr-xr-x 1 root root 11268 Jun 3 13:46 pam_listfile.so*
-rwxr-xr-x 1 root root 11182 Jun 3 13:46 pam_mail.so*
-rwxr-xr-x 1 root root 5923 Jun 3 13:46 pam_nologin.so*
-rwxr-xr-x 1 root root 5460 Jun 3 13:46 pam_permit.so*
-rwxr-xr-x 1 root root 18226 Jun 3 13:46 pam_pwcheck.so*
-rwxr-xr-x 1 root root 12590 Jun 3 13:46 pam_rhosts_auth.so*
-rwxr-xr-x 1 root root 5551 Jun 3 13:46 pam_rootok.so*
-rwxr-xr-x 1 root root 7239 Jun 3 13:46 pam_securetty.so*
-rwxr-xr-x 1 root root 6551 Jun 3 13:46 pam_shells.so*
-rwxr-xr-x 1 root root 55925 Jun 4 12:00 pam_smb_auth.so*
-rwxr-xr-x 1 root root 12678 Jun 3 13:46 pam_stress.so*
-rwxr-xr-x 1 root root 11170 Jun 3 13:46 pam_tally.so*
-rwxr-xr-x 1 root root 11124 Jun 3 13:46 pam_time.so*
-rwxr-xr-x 1 root root 45703 Jun 3 13:46 pam_unix.so*
-rwxr-xr-x 1 root root 45703 Jun 3 13:46 pam_unix2.so*
-rwxr-xr-x 1 root root 45386 Jun 3 13:46 pam_unix_acct.so*
-rwxr-xr-x 1 root root 45386 Jun 3 13:46 pam_unix_auth.so*
-rwxr-xr-x 1 root root 45386 Jun 3 13:46 pam_unix_passwd.so*
-rwxr-xr-x 1 root root 45386 Jun 3 13:46 pam_unix_session.so*
-rwxr-xr-x 1 root root 9726 Jun 3 13:46 pam_userdb.so*
-rwxr-xr-x 1 root root 6424 Jun 3 13:46 pam_warn.so*
-rwxr-xr-x 1 root root 7460 Jun 3 13:46 pam_wheel.so*
./sbin:
total 3132
drwxr-xr-x 2 root root 4096 Jun 4 12:35 ./
drwxr-xr-x 9 root root 4096 Jun 5 10:05 ../
-rwxr-xr-x 1 root root 178256 Jun 3 13:46 choptest*
-rwxr-xr-x 1 root root 184032 Jun 3 13:46 cqtest*
-rwxr-xr-x 1 root root 81096 Jun 3 13:46 dialtest*
-rwxr-xr-x 1 root root 1142128 Jun 4 11:28 ldconfig*
-rwxr-xr-x 1 root root 2868 Jun 3 13:46 lockname*
-rwxr-xr-x 1 root root 3340 Jun 3 13:46 ondelay*

176

Appendix

-rwxr-xr-x 1 root root 376796 Jun 3 13:46 pagesend*
-rwxr-xr-x 1 root root 13950 Jun 3 13:46 probemodem*
-rwxr-xr-x 1 root root 9234 Jun 3 13:46 recvstats*
-rwxr-xr-x 1 root root 64480 Jun 3 13:46 sftp-server*
-rwxr-xr-x 1 root root 744412 Jun 3 13:46 sshd*
-rwxr-xr-x 1 root root 30750 Jun 4 11:46 su*
-rwxr-xr-x 1 root root 194632 Jun 3 13:46 tagtest*
-rwxr-xr-x 1 root root 69892 Jun 3 13:46 tsitest*
-rwxr-xr-x 1 root root 43792 Jun 3 13:46 typetest*
./tmp:
total 8
drwxr-xr-x 2 root root 4096 Jun 4 12:32 ./
drwxr-xr-x 9 root root 4096 Jun 5 10:05 ../
./usr:
total 8
drwxr-xr-x 2 root root 4096 Jun 4 12:16 ./
drwxr-xr-x 9 root root 4096 Jun 5 10:05 ../
lrwxrwxrwx 1 root root 7 Jun 4 12:14 bin -> ../bin//
lrwxrwxrwx 1 root root 7 Jun 4 11:33 lib -> ../lib//
lrwxrwxrwx 1 root root 8 Jun 4 12:13 sbin -> ../sbin//

Chroot environment for Apache

Introduction

The chroot utility is often used to jail a daemon in a restricted tree. You can use it to insulate services
from one another, so that security issues in a software package do not jeopardize the whole server. When
using the makejail script, setting up and updating the chrooted tree is much easier.

FIXME: Apache can also be chrooted using http://www.modsecurity.org which is available in liba-
pache-mod-security (for Apache 1.x) and libapache2-mod-security (for Apache 2.x).

Licensing

This document is copyright 2002 Alexandre Ratti. It has been dual-licensed and released under the GPL
version 2 (GNU General Public License) the GNU-FDL 1.2 (GNU Free Documentation Licence) and is
included in this manual with his explicit permission.

Installing the server

This procedure was tested on Debian GNU/Linux 3.0 (Woody) with makejail 0.0.4-1 (in Debian/testing).

•
Log in as root and create a new jail directory:

$ mkdir -p /var/chroot/apache

• Create a new user and a new group. The chrooted Apache server will run as this user/group, which isn't
used for anything else on the system. In this example, both user and group are called chrapach.

 $ adduser --home /var/chroot/apache --shell /bin/false \
 --no-create-home --system --group chrapach

FIXME: is a new user needed? (Apache already runs as the apache user)

177

http://www.modsecurity.org

Appendix

• Install Apache as usual on Debian: apt-get install apache

• Set up Apache (e.g. define your subdomains, etc.). In the /etc/apache/httpd.conf configuration
file, set the Group and User options to chrapach. Restart Apache and make sure the server is working
correctly. Now, stop the Apache daemon.

• Install makejail (available in Debian/testing for now). You should also install wget and lynx as they
will be used by makejail to test the chrooted server: apt-get install makejail wget lynx

• Copy the sample configuration file for Apache to the /etc/makejail directory:

 # cp /usr/share/doc/makejail/examples/apache.py /etc/makejail/

• Edit /etc/makejail/apache.py. You need to change the chroot, users and groups options. To
run this version of makejail, you can also add a packages option. See the http://www.floc.net/make-
jail/current/doc/. A sample is shown here:

chroot="/var/chroot/apache"
testCommandsInsideJail=["/usr/sbin/apachectl start"]
processNames=["apache"]
testCommandsOutsideJail=["wget -r --spider http://localhost/",
 "lynx --source https://localhost/"]
preserve=["/var/www",
 "/var/log/apache",
 "/dev/log"]
users=["chrapach"]
groups=["chrapach"]
packages=["apache", "apache-common"]
userFiles=["/etc/password",
 "/etc/shadow"]
groupFiles=["/etc/group",
 "/etc/gshadow"]
forceCopy=["/etc/hosts",
 "/etc/mime.types"]

FIXME: some options do not seem to work properly. For instance, /etc/shadow and /etc/gshad-
ow are not copied, whereas /etc/password and /etc/group are fully copied instead of being
filtered.

• Create the chroot tree: makejail /etc/makejail/apache.py

• If /etc/password and /etc/group were fully copied, type:

 $ grep chrapach /etc/passwd > /var/chroot/apache/etc/passwd
 $ grep chrapach /etc/group > /var/chroot/apache/etc/group

to replace them with filtered copies.

• Copy the Web site pages and the logs into the jail. These files are not copied automatically (see the
preserve option in makejail's configuration file).

 # cp -Rp /var/www /var/chroot/apache/var
 # cp -Rp /var/log/apache/*.log /var/chroot/apache/var/log/apache

178

http://www.floc.net/makejail/current/doc/
http://www.floc.net/makejail/current/doc/

Appendix

• Edit the startup script for the system logging daemon so that it also listen to the /var/ch-
root/apache/dev/log socket. In /etc/default/syslogd, replace: SYSLOGD="" with
SYSLOGD=" -a /var/chroot/apache/dev/log" and restart the daemon (/etc/init.d/
sysklogd restart).

• Edit the Apache startup script (/etc/init.d/apache). You might need to make some changes to
the default startup script for it to run properly with a chrooted tree. Such as:

• set a new CHRDIR variable at the top of the file;

• edit the start, stop, reload, etc. sections;

• add a line to mount and unmount the /proc filesystem within the jail.

#! /bin/bash
#
apache Start the apache HTTP server.
#

CHRDIR=/var/chroot/apache

NAME=apache
PATH=/bin:/usr/bin:/sbin:/usr/sbin
DAEMON=/usr/sbin/apache
SUEXEC=/usr/lib/apache/suexec
PIDFILE=/var/run/$NAME.pid
CONF=/etc/apache/httpd.conf
APACHECTL=/usr/sbin/apachectl

trap "" 1
export LANG=C
export PATH

test -f $DAEMON || exit 0
test -f $APACHECTL || exit 0

ensure we don't leak environment vars into apachectl
APACHECTL="env -i LANG=${LANG} PATH=${PATH} chroot $CHRDIR $APACHECTL"

if egrep -q -i "^[[:space:]]*ServerType[[:space:]]+inet" $CONF
then
 exit 0
fi

case "$1" in
 start)
 echo -n "Starting web server: $NAME"
 mount -t proc proc /var/chroot/apache/proc
 start-stop-daemon --start --pidfile $PIDFILE --exec $DAEMON \
 --chroot $CHRDIR
 ;;

 stop)
 echo -n "Stopping web server: $NAME"

179

Appendix

 start-stop-daemon --stop --pidfile "$CHRDIR/$PIDFILE" --oknodo
 umount /var/chroot/apache/proc
 ;;

 reload)
 echo -n "Reloading $NAME configuration"
 start-stop-daemon --stop --pidfile "$CHRDIR/$PIDFILE" \
 --signal USR1 --startas $DAEMON --chroot $CHRDIR
 ;;

 reload-modules)
 echo -n "Reloading $NAME modules"
 start-stop-daemon --stop --pidfile "$CHRDIR/$PIDFILE" --oknodo \
 --retry 30
 start-stop-daemon --start --pidfile $PIDFILE \
 --exec $DAEMON --chroot $CHRDIR
 ;;

 restart)
 $0 reload-modules
 exit $?
 ;;

 force-reload)
 $0 reload-modules
 exit $?
 ;;

 *)
 echo "Usage: /etc/init.d/$NAME {start|stop|reload|reload-modules|force-reload|restart}"
 exit 1
 ;;
esac

if [$? == 0]; then
 echo .
 exit 0
else
 echo failed
 exit 1
fi

FIXME: should the first Apache process be run as another user than root (i.e. add --chuid chrapach:chra-
pach)? Cons: chrapach will need write access to the logs, which is awkward.

• Replace in /etc/logrotate.d/apache/var/log/apache/*.log with /var/ch-
root/apache/var/log/apache/*.log

• Start Apache (/etc/init.d/apache start) and check what is it reported in the jail log (/var/ch-
root/apache/var/log/apache/error.log). If your setup is more complex, (e.g. if you also
use PHP and MySQL), files will probably be missing. if some files are not copied automatically by
makejail, you can list them in the forceCopy (to copy files directly) or packages (to copy full packages
and their dependencies) option the /etc/makejail/apache.py configuration file.

• Type ps aux | grep apache to make sure Apache is running. You should see something like:

180

Appendix

 root 180 0.0 1.1 2936 1436 ? S 04:03 0:00 /usr/sbin/apache
 chrapach 189 0.0 1.1 2960 1456 ? S 04:03 0:00 /usr/sbin/apache
 chrapach 190 0.0 1.1 2960 1456 ? S 04:03 0:00 /usr/sbin/apache
 chrapach 191 0.0 1.1 2960 1456 ? S 04:03 0:00 /usr/sbin/apache
 chrapach 192 0.0 1.1 2960 1456 ? S 04:03 0:00 /usr/sbin/apache
 chrapach 193 0.0 1.1 2960 1456 ? S 04:03 0:00 /usr/sbin/apache

• Make sure the Apache processes are running chrooted by looking in the /proc filesystem: ls -la /
proc/process_number/root/. where process_number is one of the PID numbers listed
above (2nd column; 189 for instance). The entries for a restricted tree should be listed:

 drwxr-sr-x 10 root staff 240 Dec 2 16:06 .
 drwxrwsr-x 4 root staff 72 Dec 2 08:07 ..
 drwxr-xr-x 2 root root 144 Dec 2 16:05 bin
 drwxr-xr-x 2 root root 120 Dec 3 04:03 dev
 drwxr-xr-x 5 root root 408 Dec 3 04:03 etc
 drwxr-xr-x 2 root root 800 Dec 2 16:06 lib
 dr-xr-xr-x 43 root root 0 Dec 3 05:03 proc
 drwxr-xr-x 2 root root 48 Dec 2 16:06 sbin
 drwxr-xr-x 6 root root 144 Dec 2 16:04 usr
 drwxr-xr-x 7 root root 168 Dec 2 16:06 var

To automate this test, you can type:ls -la /proc/`cat /var/chroot/apache/var/run/
apache.pid`/root/.

FIXME: Add other tests that can be run to make sure the jail is closed?

The reason I like this is because setting up the jail is not very difficult and the server can be updated in
just two lines:

apt-get update && apt-get install apache
makejail /etc/makejail/apache.py

See also
If you are looking for more information you can consider these sources of information in which the infor-
mation presented is based: http://www.floc.net/makejail/, this program was written by Alain Tesio

181

http://www.floc.net/makejail/

	Securing Debian Manual
	Table of Contents
	Chapter 1. Introduction
	Authors
	Where to get the manual (and available formats)
	Organizational notes/feedback
	Prior knowledge
	Things that need to be written (FIXME/TODO)
	Credits and thanks!

	Chapter 2. Before you begin
	What do you want this system for?
	Be aware of general security problems
	How does Debian handle security?

	Chapter 3. Before and during the installation
	Choose a BIOS password
	Partitioning the system
	Choose an intelligent partition scheme
	Selecting the appropriate file systems

	Do not plug to the Internet until ready
	Set a root password
	Run the minimum number of services required
	Disabling daemon services
	Disabling inetd or its services

	Install the minimum amount of software required
	Removing Perl

	Read the Debian security mailing lists

	Chapter 4. After installation
	Subscribe to the Debian Security Announce mailing list
	Execute a security update
	Security update of libraries
	Security update of the kernel

	Change the BIOS (again)
	Set a LILO or GRUB password
	Disable root prompt on the initramfs
	Remove root prompt on the kernel
	Restricting console login access
	Restricting system reboots through the console
	Restricting the use of the Magic SysRq key
	Mounting partitions the right way
	Setting /tmp noexec
	Setting /usr read-only

	Providing secure user access
	User authentication: PAM
	Password security in PAM
	User access control in PAM
	User limits in PAM
	Control of su in PAM
	Temporary directories in PAM
	Configuration for undefined PAM applications
	Limiting resource usage: the limits.conf file
	User login actions: edit /etc/login.defs
	User login actions: edit /etc/pam.d/login
	Restricting ftp: editing /etc/ftpusers
	Using su
	Using sudo
	Disallow remote administrative access
	Restricting users's access
	User auditing
	Input and output audit with script
	Using the shell history file
	Complete user audit with accounting utilities
	Other user auditing methods

	Reviewing user profiles
	Setting users umasks
	Limiting what users can see/access
	Limiting access to other user's information

	Generating user passwords
	Checking user passwords
	Logging off idle users

	Using tcpwrappers
	The importance of logs and alerts
	Using and customizing logcheck
	Configuring where alerts are sent
	Using a loghost
	Log file permissions

	Adding kernel patches
	Protecting against buffer overflows
	Kernel patch protection for buffer overflows
	Testing programs for overflows

	Secure file transfers
	File system limits and control
	Using quotas
	The ext2 filesystem specific attributes (chattr/lsattr)
	Checking file system integrity
	Setting up setuid check

	Securing network access
	Configuring kernel network features
	Configuring syncookies
	Securing the network on boot-time
	Configuring firewall features
	Disabling weak-end hosts issues
	Protecting against ARP attacks

	Taking a snapshot of the system
	Other recommendations
	Do not use software depending on svgalib

	Chapter 5. Securing services running on your system
	Securing ssh
	Chrooting ssh
	Ssh clients
	Disallowing file transfers
	Restricing access to file transfer only

	Securing Squid
	Securing FTP
	Securing access to the X Window System
	Check your display manager

	Securing printing access (the lpd and lprng issue)
	Securing the mail service
	Configuring a Nullmailer
	Providing secure access to mailboxes
	Receiving mail securely

	Securing BIND
	Bind configuration to avoid misuse
	Changing BIND's user
	Chrooting the name server

	Securing Apache
	Disabling users from publishing web contents
	Logfiles permissions
	Published web files

	Securing finger
	General chroot and suid paranoia
	Making chrooted environments automatically

	General cleartext password paranoia
	Disabling NIS
	Securing RPC services
	Disabling RPC services completely
	Limiting access to RPC services

	Adding firewall capabilities
	Firewalling the local system
	Using a firewall to protect other systems
	Setting up a firewall
	Using firewall packages
	Manual init.d configuration
	Configuring firewall rules through ifup
	Testing your firewall configuration

	Chapter 6. Automatic hardening of Debian systems
	Harden
	Bastille Linux

	Chapter 7. Debian Security Infrastructure
	The Debian Security Team
	Debian Security Advisories
	Vulnerability cross references
	CVE compatibility

	Security Tracker
	Debian Security Build Infrastructure
	Developer's guide to security updates

	Package signing in Debian
	The current scheme for package signature checks
	Secure apt
	Per distribution release check
	Basic concepts
	Release checksums
	Verification of the Release file
	Check of Release.gpg by apt
	How to tell apt what to trust
	Finding the key for a repository
	Safely adding a key
	Verifying key integrity
	Debian archive key yearly rotation
	Known release checking problems
	Manual per distribution release check

	Release check of non Debian sources
	Alternative per-package signing scheme

	Chapter 8. Security tools in Debian
	Remote vulnerability assessment tools
	Network scanner tools
	Internal audits
	Auditing source code
	Virtual Private Networks
	Point to Point tunneling

	Public Key Infrastructure (PKI)
	SSL Infrastructure
	Antivirus tools
	GPG agent

	Chapter 9. Developer's Best Practices for OS Security
	Best practices for security review and design
	Creating users and groups for software daemons

	Chapter 10. Before the compromise
	Keep your system secure
	Tracking security vulnerabilities
	Continuously update the system
	Manually checking which security updates are available
	Checking for updates at the Desktop
	Automatically checking for updates with cron-apt
	Automatically checking for security issues with debsecan
	Other methods for security updates

	Avoid using the unstable branch
	Security support for the testing branch
	Automatic updates in a Debian GNU/Linux system

	Do periodic integrity checks
	Set up Intrusion Detection
	Network based intrusion detection
	Host based intrusion detection

	Avoiding root-kits
	Loadable Kernel Modules (LKM)
	Detecting root-kits
	Proactive defense
	Reactive defense

	Genius/Paranoia Ideas - what you could do
	Building a honeypot

	Chapter 11. After the compromise (incident response)
	General behavior
	Backing up the system
	Contact your local CERT
	Forensic analysis
	Analysis of malware

	Chapter 12. Frequently asked Questions (FAQ)
	Security in the Debian operating system
	Is Debian more secure than X?
	Is Debian more secure than other Linux distributions (such as Red Hat, SuSE...)?
	There are many Debian bugs in Bugtraq. Does this mean that it is very vulnerable?
	Does Debian have any certification related to security?
	Are there any hardening programs for Debian?
	I want to run XYZ service, which one should I choose?
	How can I make service XYZ more secure in Debian?
	How can I remove all the banners for services?
	Are all Debian packages safe?
	Why are some log files/configuration files world-readable, isn't this insecure?
	Why does /root/ (or UserX) have 755 permissions?
	After installing a grsec/firewall, I started receiving many console messages! How do I remove them?
	Operating system users and groups
	Are all system users necessary?
	I removed a system user! How can I recover?
	What is the difference between the adm and the staff group?

	Why is there a new group when I add a new user? (or Why does Debian give each user one group?)
	Questions regarding services and open ports
	Why are all services activated upon installation?
	Can I remove inetd?
	Why do I have port 111 open?
	What use is identd (port 113) for?
	I have services using port 1 and 6, what are they and how can I remove them?
	I found the port XYZ open, can I close it?
	Will removing services from /etc/services help secure my box?

	Common security issues
	I have lost my password and cannot access the system!

	How do I accomplish setting up a service for my users without giving out shell accounts?

	My system is vulnerable! (Are you sure?)
	Vulnerability assessment scanner X says my Debian system is vulnerable!
	I've seen an attack in my system's logs. Is my system compromised?
	I have found strange 'MARK' lines in my logs: Am I compromised?
	I found users using 'su' in my logs: Am I compromised?
	I have found 'possible SYN flooding' in my logs: Am I under attack?
	I have found strange root sessions in my logs: Am I compromised?
	I have suffered a break-in, what do I do?
	How can I trace an attack?
	Program X in Debian is vulnerable, what do I do?
	The version number for a package indicates that I am still running a vulnerable version!

	Specific software
	proftpd is vulnerable to a Denial of Service attack.
	After installing portsentry, there are a lot of ports open.

	Questions regarding the Debian security team

	Appendix A. Changelog/History
	Appendix B. Appendix
	The hardening process step by step
	Configuration checklist
	Setting up a stand-alone IDS
	Setting up a bridge firewall
	A bridge providing NAT and firewall capabilities
	A bridge providing firewall capabilities
	Basic IPtables rules

	Sample script to change the default Bind installation.
	Security update protected by a firewall
	Chroot environment for SSH
	Chrooting the ssh users
	Using libpam-chroot
	Patching the ssh server

	Chrooting the ssh server
	Setup a minimal system (the really easy way)
	Automatically making the environment (the easy way)
	Manually creating the environment (the hard way)

	Chroot environment for Apache
	Introduction
	Licensing

	Installing the server

	See also

